Skip to main content

Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

  • Samuel J. Payler (a1), Jennifer F. Biddle (a2), Andrew J. Coates (a3), Claire R. Cousins (a4), Rachel E. Cross (a5), David C. Cullen (a6), Michael T. Downs (a7), Susana O. L. Direito (a1), Thomas Edwards (a8), Amber L. Gray (a9), Jac Genis (a8), Matthew Gunn (a5), Graeme M. Hansford (a10), Patrick Harkness (a11), John Holt (a10), Jean-Luc Josset (a12), Xuan Li (a11), David S. Lees (a13), Darlene S. S. Lim (a13) (a14), Melissa Mchugh (a10), David Mcluckie (a8), Emma Meehan (a15), Sean M. Paling (a15), Audrey Souchon (a12), Louise Yeoman (a15) and Charles S. Cockell (a1)...

The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research – MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.

Corresponding author
Hide All
Abercromby, A.F.J., Chappell, S.P. & Gernhardt, M.L. (2013). Acta Astron. 91, 3448.
Bao, X., Bar-Cohen, Y., Chang, Z., Dolgin, B.P., Sherrit, S., Pal, D.S., Du, S. & Peterson, T. (2003). IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50, 1147–60.
Barnes, D. et al. (2011). 11th Symp. on Advanced Space Technologies in Robotics and Automation–ASTRA 2011, 12–14.
Barnes, D. et al. (2014). EPSC Abstr. 9, 729–1.
Bottrell, S.H., Leosson, M. & Newton, R.J. (1996). Trans. Inst. Min. Metall. B 105, 159164.
Bridges, J.C. & Grady, M.M. (1999). Meteorit. Planet. Sci. 34, 407415.
Bridges, J.C. & Grady, M.M. (2000). Earth Planet. Sci. Lett. 176, 267279.
Cabrol, N.A. et al. (2007). J. Geophys. Res. 112, G04.
Coates, A.J. et al. (2012). Planet. Space Sci. 74, 247253.
Cockell, C.S., Lee, P., Broady, P., Lim, D.S.S., Osinski, G.R., Parnell, J., Koeberl, C., Pesonen, L. & Salminen, J. (2005). Meteorit. Planet. Sci. 40, 19011914.
Cockell, C.S., Payler, S., Paling, S. & McLuckie, D. (2013). Astron. Geophys. 54, 2.252.27.
Cousins, C.R., Gunn, M., Prosser, B.J., Barnes, D.P., Crawford, I.A., Griffiths, A.D., Davis, L.E. & Coates, A.J. (2012). Planet. Space Sci. 71, 80100.
Cushing, G.E., Titus, T.N., Wynne, J.J. & Christensen, P.R. (2007). Geophys. Res. Lett. 34(17).
Dickinson, W.W. & Rosen, M.R. (2003). Geology 31, 199202.
Geller, J.T., Holman, H.Y., Su, G., Conrad, M.E., Pruess, K. & Hunter-Cevera, J.C. (2000). J. Contam. Hydrol. 43, 6390.
Griffiths, A.D., Coates, A.J., Jaumann, R., Michaelis, H., Paar, G., Barnes, D. & Josset, J.-L., The PanCam Team (2006). Int. J. Astrobiol. 5, 269275.
Hansford, G.M. (2011). J. Appl. Crystallogr. 44, 514525.
Hansford, G.M. (2013). Nucl. Instrum. Methods 728, 102106.
Hansford, G.M. (2015). The 64th Annual Conf. on Applications of X-ray Analysis, The Westin Westminster Hotel, Westminster, Colorado, USA, 3–7th August.
Hansford, G.M., Turner, S.M., Staab, R.D. & Vernon, D. (2014). J. Appl. Crystallogr. 47, 17081715.
Harris, J.K., Cousins, C.R., Gunn, M., Grindrod, P.G., Barnes, D.P., Crawford, I.A., Cross, R. & Coates, A.J. (2015). Icarus 252, 284300.
Hodges, C.A. & Moore, H.J. (1994). US Geol. Surv. Profession. Pap. 1534, 194.
Hynek, B.M., Osterloo, M.K. & Kierein-Young, K.S. (2015). Geology 43, 787790.
Jasiobedzki, P., Dimas, C.F. & Lim, D. (2012). OCEANS 2012 MTS/IEEE, Hampton Roads, Virginia, October 14–19.
Langevin, Y., Poulet, F., Bibring, J.P. & Gondet, B. (2005). Science 307, 15841586.
Léveillé, R.J. & Datta, S. (2010). Planet. Space Sci. 58, 592598.
Lim, D.S.S. et al. (2011). Geol. Soc. Spec. Pap. 483, 85115.
Martínez, G.M. & Renno, N.O. (2013). Space. Sci. Rev. 175, 2951.
Norton, C.F., McGenity, T.J. & Grant, W.D. (1993). J. Gen. Microbiol. 139, 10771081.
Ojha, L., Wilhelm, M.B., Murchie, S.L., McEwen, A.S., Wray, J.J., Hanley, J., Masse, M. & Chojnacki, M. (2015). Nat. Geosci. 8, 829832.
Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., Glotch, T.D., Baldridge, A.M., Christensen, P.R., Tornabene, L.L. & Anderson, F.S. (2008). Science 319, 16511654.
Osterloo, M.M., Anderson, F.S., Hamilton, V.E. & Hynek, B.M. (2010). J. Geophys. Res. 115, E10.
Pedersen, K. (1997). FEMS Microbiol. Rev. 20, 399414.
Pollard, W., Haltigin, T., Whyte, L., Niederberger, T., Andersen, D., Omelon, C., Nadeau, J., Ecclestone, M. & Lebeuf, M. (2009). Planet. Space Sci. 57, 646659.
Pugh, S., Barnes, D. & Tyler, L. (2012). Proc. Int. Symp. Artificial Intelligence, Robotics and Automation in Space.
Rull, F. et al. (2011). Proc. SPIE 8152, 12.
Sarrazin, P., Blake, D., Feldman, S., Chipera, S., Vaniman, D. & Bish, D. (2005). Powder Diffr. 20, 128133.
Schenker, P.S. et al. (2001). Proc. 6th Intl. Symp. on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS-'01), Montreal, Canada.
Skelley, A.M., Aubrey, A.D., Willis, P.A., Amashukeli, X., Ehrenfreund, P., Bada, J.L., Grunthaner, F.J. & Mathies, R.A. (2007). J. Geophys. Res. Biogeo. 112, G4S11.
Squyres, S.W. et al. (2004). Science 306, 17091714.
Xiao, W., Wang, Z.G., Wang, Y.X., Schneegurt, M.A., Li, Z.Y., Lai, Y.H., Zhang, S.Y., Wen, M.L. & Cui, X.L. (2013). J. Basic Microbiol. 53, 111.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 9
Total number of PDF views: 122 *
Loading metrics...

Abstract views

Total abstract views: 1040 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th September 2018. This data will be updated every 24 hours.