Skip to main content Accesibility Help
×
×
Home

Planetary Trojans – the main source of short period comets?

  • J. Horner (a1) and P. S. Lykawka (a2)
Abstract

One of the key considerations when assessing the potential habitability of telluric worlds will be that of the impact regime experienced by the planet. In this work, we present a short review of our understanding of the impact regime experienced by the terrestrial planets within our own Solar system, describing the three populations of potentially hazardous objects which move on orbits that take them through the inner Solar system. Of these populations, the origins of two (the Near-Earth Asteroids and the Long-Period Comets) are well understood, with members originating in the Asteroid belt and Oort cloud, respectively. By contrast, the source of the third population, the Short-Period Comets, is still under debate. The proximate source of these objects is the Centaurs, a population of dynamically unstable objects that pass perihelion (closest approach to the Sun) between the orbits of Jupiter and Neptune. However, a variety of different origins have been suggested for the Centaur population. Here, we present evidence that at least a significant fraction of the Centaur population can be sourced from the planetary Trojan clouds, stable reservoirs of objects moving in 1:1 mean-motion resonance with the giant planets (primarily Jupiter and Neptune). Focussing on simulations of the Neptunian Trojan population, we show that an ongoing flux of objects should be leaving that region to move on orbits within the Centaur population. With conservative estimates of the flux from the Neptunian Trojan clouds, we show that their contribution to that population could be of order ~3%, while more realistic estimates suggest that the Neptune Trojans could even be the main source of fresh Centaurs. We suggest that further observational work is needed to constrain the contribution made by the Neptune Trojans to the ongoing flux of material to the inner Solar system, and believe that future studies of the habitability of exoplanetary systems should take care not to neglect the contribution of resonant objects (such as planetary Trojans) to the impact flux that could be experienced by potentially habitable worlds.

Copyright
References
Hide All
Andrews-Hanna, J.C., Zuber, M.T., & Banerdt, W.B., 2008, Nature, 453, 1212.
Bailey, B.L. & Malhotra, R., 2009, Icarus, 203, 155.
Baldwin, E.C., Milner, D.J., Burchell, M.J., & Crawford, I.A., 2007, Meteoritics and Planetary Science, 42, 1905.
Benz, W., Anic, A., Horner, J. & Whitby, J.A., 2007, Space Science Reviews, 132, 189.
Biermann, L., Huebner, W.F., & Lust, R., 1983, Proceedings of the National Academy of Science, 80, 5151.
Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H.F., Michel, P., & Metcalfe, T.S., 2002, Icarus, 156, 399.
Bottke, W., Vokrouhlický, D., Nesvorný, D., 2007, Nature, 448, 4853.
Brasser, R., Mikkola, S., Huang, T.-Y., Wiegert, P., Innanen, K., 2004, MNRAS, 347, 833.
Brett, R., 1992, Geochimica et Cosmochimica Acta, 56, 3603.
Brunini, A., Melita, M.D., 2002, Icarus, 160, 32.
Cabrol, N.A., et al. , 2006, Journal of Geophysical Research (Planets), 111, 2.
Calvin, W.M., et al. , 2008, Journal of Geophysical Research (Planets), 113, 12.
Chambers, J.E., 1999, MNRAS, 304, 793.
Chapman, C.R., 1994, Nature 367, 3340.
Chiang, E.I. et al. , 2003, AJ, 126, 430.
Chiang, E.I., Lithwick, Y., 2005, ApJ, 628, 520.
Chebotarev, G.A., 1974, SvA, 17, 677.
di Sisto, R.P., Brunini, A., 2007, Icarus, 190, 224.
Edgeworth, K.E., 1943, Journal of the British Astronomical Association, 53, 181.
Emel'yanenko, V.V., Asher, D.J., & Bailey, M.E., 2005, MNRAS, 361, 1345.
Emel'Yanenko, V.V., Asher, D.J., & Bailey, M.E., 2007, MNRAS, 381, 779.
Fernandez, J.A., Ip, W.-H., 1984, Icarus, 58, 109.
Ford, E.B., Chiang, E.I., 2007, ApJ, 661, 602.
Fouchard, M., Froeschlé, C., Matese, J.J., & Valsecchi, G., 2005, Celestial Mechanics and Dynamical Astronomy, 93, 229.
Glasby, G.P. & Kunzendorf, H. 1996, Geologische Rundschau, 85, 191.
Gomes, R.S., Morbidelli, A., Levison, H.F., 2004, Icarus, 170, 492.
Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005, Natures, 435, 466469.
Grant, J.A., et al. , 2008, Geology, 36, 195.
Hahn, J.M., Malhotra, R., 2005, AJ, 130, 2392.
Heisler, J., & Tremaine, S. 1986, Icarus, 65, 13.
Holman, M.J., Wisdom, J., 1993, AJ, 105, 1987.
Horner, J. & Evans, N.W., 2002, MNRAS, 335, 641.
Horner, J., Evans, N.W., Bailey, M.E. & Asher, D.J., 2003, MNRAS 343, 10571066.
Horner, J., Evans, N.W. & Bailey, M.E., 2004a, MNRAS 354, 798810.
Horner, J., Evans, N.W. & Bailey, M.E., 2004b, MNRAS, 355, 321.
Horner, J., & Wyn Evans, N., 2006, MNRAS, 367, L20.
Horner, J. & Jones, B.W., 2010, International Journal of Astrobiology (submitted)
Horner, J. & Lykawka, P.S., 2010a, MNRAS, 402, 13.
Horner, J. & Lykawka, P.S., 2010b, MNRAS, 441.
Ivezic, Z. et al. , 2008, preprint (astro-ph/0805.2366) (http://www.lsst.org/overview)
Jewitt, D.C., 2003, Earth Moon Planets, 92, 465.
Kuiper, G.P., 1951, Astrophysics: A Topical Symposium, ed. Hynek, J.A., New York: McGraw-Hill.
Levison, H.F., & Duncan, M.J., 1997, Icarus, 127, 13.
Levison, H.F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., Tsiganis, K., 2008, Icarus, 196, 258.
Lykawka, P.S., Mukai, T., 2007, Icarus, 189, 213.
Lykawka, P.S., Mukai, T., 2008, AJ, 135, 1161.
Lykawka, P.S., Horner, J., Jones, B.W. & Mukai, T., 2009, MNRAS, 398, 1715.
Lykawka, P.S., Horner, J., Jones, B.W. & Mukai, T., 2010, MNRAS, 296.
Lykawka, P.S. & Horner, J., 2010, MNRAS, 513.
Malhotra, R., 1995, AJ, 110, 420.
Marzari, F., Tricarico, P., Scholl, H., 2003, A&A, 410, 725.
Matese, J.J., Whitman, P.G. & Whitmire, D.P., 1999, Icarus, 141, 354.
Matese, J.J. & Whitmire, D.P., 2010, arXiv:1004.4584
Mazeeva, O.A., 2004, Solar System Research, 38, 325.
Mikkola, S., Innanen, K., 1992, AJ, 104, 1641.
Milner, D.J., Baldwin, E.C., & Burchell, M.J., 2008, Meteoritics and Planetary Science, 43, 2015.
Morbidelli, A., Bottke, W.F., Froeschlé, Ch. & Michel, P., 2002, Origin and Evolution of Near-Earth Objects, Asteroids III, University of Arizona Press, Tucson, AZ, pp. 409422.
Mueller, T.G. et al. , 2009, EM&P, 29.
Murray, C.D., Dermott, S.F., 1999, Solar System Dynamics, Princeton Univ. Press, Princeton, NJ.
Murray, J.B., 1999, MNRAS, 309, 31.
Nesvorný, D., Dones, L., 2002, Icarus, 160, 271.
Oort, J.H. (1950). The structure of the cloud of comets surrounding the Solar System, and a hypothesis concerning its origin, Bull. Astron. Inst. Ned., 11(408), 91–110.
Poinar, G.O. & Poinar, R., 2008, What bugged the dinosaurs?: insects, disease, and death in the Cretaceous, Princeton: Princeton University Press.
Sheppard, S.S., Trujillo, C.A., 2006, Sci, 313, 511.
Tedesco, E.F., Desert, F.-X., 2002, AJ, 123, 2070.
Thaddeus, P. & Chanan, G.A., 1985, Nature, 314, 73.
Tiscareno, M.S., Malhotra, R., 2003, AJ, 126, 3122.
Volk, K., & Malhotra, R., 2008, Astrophysical Journal, 687, 714.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed