Skip to main content
×
×
Home

The potential for detecting ‘life as we don't know it’ by fractal complexity analysis

  • Armando Azua-Bustos (a1) (a2) and Cristian Vega-Martínez (a3)
Abstract

Finding life in the Universe entirely different to the one evolved on Earth is probable. This is a significant constraint for life-detecting instruments that were sent and may be sent elsewhere in the solar system, as how could we detect life as ‘we don't know it’? How could we detect something when we have no prior knowledge of its composition or how it looks like? Here we argue that disregarding the type of lifeform that could be envisioned, all must share in common the attribute of being entities that decrease their internal entropy at the expense of free energy obtained from its surroundings. As entropy quantifies the degree of disorder in a system, any envisioned lifeform must have a higher degree of order than its supporting environment. Here, we show that by using fractal mathematics analysis alone, one can readily quantify the degree of entropy difference (and thus, their structural complexity) of living processes (lichen growths and plant growing patterns in this case) as distinct entities separate from its similar abiotic surroundings. This approach may allow possible detection of unknown forms of life based on nothing more than entropy differentials of complementary datasets. Future explorations in the solar system, like Mars or Titan, may incorporate this concept in their mission planning in order to detect potential endemic lifeforms.

Copyright
References
Hide All
Avery, J. (2003). Information Theory and Evolution. World Scientific Publishing Co. Pte. Ltd., London, p. 217.
Baranger, M.C. (2011). Complexity, and Entropy: a Physics Talk for Non-Physicists. MIT-CTP-3112. Available online at: http://www.necsi.edu/faculty/baranger.html.
Borthagaray, A.I., Fuentes, M.A. & Marquet, P.A. (2010). Vegetation pattern formation in a fog-dependent ecosystem. J. Theor. Biol. 265, 1826.
Burlando, B. (1993). The fractal geometry of evolution. J. Theor. Biol. 163, 161172.
Cornelissen, J.H., Lang, S.I., Soudzilovskaia, N.A. & During, H.J. (2007). Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann. Bot. 99, 9871001.
Crutcheld, J.P. & Young, K. (1989). Inferring statistical complexity. Phys. Rev. Lett. 63, 105108.
Davies, P.C., Benner, S.A., Cleland, C.E., Lineweaver, C.H., McKay, C.P. & Wolfe-Simon, F. (2009). Signatures of a shadow biosphere. Astrobiology 9, 241249.
Guarino, V., Guaccio, A., Netti, P.A. & Ambrosio, L. (2010). Image processing and fractal box counting: user-assisted method for multi-scale porous scaffold characterization. J. Mater. Sci. Mater. Med. 21, 31093118.
HarFa. 2010. Available on line at: http://www.fch.vutbr.cz/lectures/imagesci/.
Kleidon, A. (2010). Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys. Life Rev. 7, 424460.
Losa, G.A. (2009). The fractal geometry of life. Riv. Biol. 102, 2959.
Lovelock, J. (1979) GAIA – A New Look at Life on Earth. Oxford University Press, p. 176.
Passalacqua, K.D., Varadarajan, A., Ondov, B.D., Okou, D.T., Zwick, N.E. & Bergman, N.H. (2009). Structure and complexity of a bacterial transcriptome. J. Bacteriol. 191, 32033211.
Rodríguez-Pascua, M.A., De Vicente, G., Calvo, J.P. & Pérez-López, R. (2003). Similarities between recent seismic activity and paleoseismites during the late miocene in the external Betic Chain (Spain): relationship by ‘b’ value and the fractal dimension. J. Struct. Geol. 25, 749763.
Schrödinger, E. (1945). What is Life–the Physical Aspect of the Living Cell. The Macmillan , p. 91.
Soille, P. & Rivet, J.-P. (1996). On the validity of fractal dimension measurements in image analysis. J. Vis. Commun. Image Rep. 7, 217229.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed