Skip to main content Accessibility help
×
×
Home

The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life

  • Joseph Gale (a1) and Amri Wandel (a2)

Abstract

We review the latest findings on extra-solar planets and their potential of having environmental conditions that could support Earth-like life. Focusing on planets orbiting red dwarf (RD) stars, the most abundant stellar type in the Milky Way, we show that including RDs as potential life supporting host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbour by up to 10. We argue that binary and multiple star systems need to be taken into account when discussing habitability and the abundance of biotic exoplanets, in particular RDs in such systems. Early considerations indicated that conditions on RD planets would be inimical to life, as their habitable zones would be so close to the host star as to make planets tidally locked. This was thought to cause an erratic climate and expose life forms to flares of ionizing radiation. Recent calculations show that these negative factors are less severe than originally thought. It has also been argued that the lesser photon energy of the radiation of the relatively cool RDs would not suffice for oxygenic photosynthesis (OP) and other related energy expending reactions. Numerous authors suggest that OP on RD planets may evolve to utilize photons in the infrared. We however argue, by analogy to the evolution of OP and the environmental physiology and distribution of land-based vegetation on Earth, that the evolutionary pressure to utilize infrared radiation would be small. This is because vegetation on RD planets could enjoy continuous illumination of moderate intensity, containing a significant component of photosynthetic 400–700 nm radiation. We conclude that conditions for OP could exist on RD planets and consequently the evolution of complex life might be possible. Furthermore, the huge number and the long lifetime of RDs make it more likely to find planets with photosynthesis and life around RDs than around Solar type stars.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Azuo-Bustos, A. & Vega-Martinez, C. (2013). Int. J. Astrobiol,. 12, 314320.
Bardalez, G., Daniella, C., Gelino, C.R. & Burgasser, A.J. (2015), arXiv:1510.00392.
Batalha, N.M. et al. (2013). Astrophys. J. 24B (Suppl. 204), 2445.
Blankenship, R.E. (1992). Photosynth. Res. 33, 91111.
Buchhave, L.A. et al. (2012). Nature 486, 375377.
Catling, D.C., Glein, C.R., Zahnle, K.J. & McKay, C.P. (2005). Astrobiology 5, 415438.
Cockell, C.S., Raven, J.A., Kaltenegger, L. & Logan, R.C. (2009). Plant Ecol. Divers. 2, 207219.
Curcio, J.A. & Petty, C.C. (1951). J. Opt. Soc. Am. 41, 302304.
Deming, D. et al. (2009). Publ. Astron. Soc. Pacific 952, 121.
Dressing, C.D. & Charbonneau, D. (2013). Astrophys. J. 767, 95115.
Dressing, C.D. & Charbonneau, D. (2015). Astrophys. J. 807, 4567.
Duchene, G. & Kraus, A. (2013). Annu. Rev. Astron. Astophys. 51, 269310.
Duquennoy, A. & Mayor, M. (1991). Astron. Astrophys. 248, 485524.
Emerson, R. & Lewis, C.M. (1943). Am. J. Bot. 30, 165178.
Erkaev, N.V., Lammer, H., Odert, P., Kulikov, Y.N., Kislyakova, K.G., Khodachenko, M.L., Güdel, M., Hanslmeier, A. & Biernat, H. (2013). Astrobiology 13(11), 10111029.
Farr, W.M., Mandel, I. & Stroud, C.A.K. (2014). Astrophys. J. Lett. arXiv: 1412.4849 (submitted).
Foreman-Mackey, D., Hogg, D.W. & Morton, T.D. (2014). Astrophys. J. 795, 6475.
Fridlund, M. et al. (2010). Astrobiology 10, 517.
Gale, J. (2009). Astrobiology of Earth. The Emergence, Evolution and Future of Life on a Planet in Turmoil, pp. 245. Oxford University Press, UK, USA.
Gale, J. & Wandel, A. (2015). Proc. Astrobiology Science Conf., Chicago, http://www.hou.usra.edu/meetings/abscicon2015/pdf/7023.pdf
Gates, D.M., Keegan, H.J., Schleter, J.C. & Weidner, V.R. (1956). Appl. Opt. 4, 1120.
Gladman, B., Quinn, D.D., Nicholson, P. & Rand, R. (1996). Icarus 122, 166192.
Gold, T. (1999). The Deep Hot Biosphere. Copernicus, Springer-Verlag, NY, Inc.
Guinan, E.F. & Engle, S.G. (2013). Proc. Am. Astron.. Soc. 221, 333.02.
Heath, M.J., Doyle, L.R., Joshi, M.J. & Haberle, R.M. (1999). Orig. Life Evol. Biosph. 29, 405424.
Hohmann-Marriott, M.F. & Blankenship, R.E. (2001). Annu. Rev. Plant Biol. 62, 515548.
Houdebine, E.R. (2003). Astron. Astrophys. 397, 10191034.
Hu, Y. & Yang, J. (2014). Proc. Natl. Acad. Sci. USA 111, 629634.
Jones, D.O. & West, A.A. (2015), arXiv: 150903645J
Joshi, M. (2003). Astrobiology 3, 415427.
Kargel, J.S., Kaye, J.Z., James, W. & Head, J.W. (2000). Icarus 148, 226265.
Kasting, J.F. & Catling, D. (2003). Annu. Rev. Astron. Astrophys. 41, 429463.
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. (1993). Icarus 101, 108118.
Kiang, N.Y., Siefert, J., Govindjee, & Blankenship, R.E. (2007a). Astrobiology 7, 222251.
Kiang, N.Y., Segura, A., Tinetti, G., Govindjee, , Blankenship, R.E., Cohen, M., Siefert, J., Crisp, D. & Meadows, V.S. (2007b). Astrobiology 252274.
Kopparapu, R.K. (2013). Astrophys. J. Lett. 767, 812.
Lambers, H., Chapin, F.S. III & Pons, T.L. (1998). Plant Physiological Ecology, Springer Verlag, Berlin, Germany.
Lammer, H., Lichtenegger, H.I.M., Khodachenko, M.L., Kulikov, Y.N. & Griessmeier, J. (2011). Proc. Astronomical Society of the Pacific, vol. 450, ed. Beaulieu, J.P., Dieteres, S. & Tinetti, G., pp. 139146.
Leconte, J., Wu, H., Menou, K. & Murray, N. (2015). Science 347, 632635.
Lee, R.E. (2008). Phycology. Cambridge University Press, NY, UK.
Lo Curto, G. et al. (2013). Astron. Astrophys. 551, 5965. (for statistics see Mayor, M., Marmier, M., Lovis, C. et al. 2011, arXiv:1109.2497 astro-ph.EP).
Loeb, A. & Maoz, D. (2013). Mon. Not. R. Astron. Soc. 432, L11L14.
Luger, R. & Barnes, R. (2015). Astrobiology 15, 119143.
Mayor, M., Marmier, M., Lovis, C., Udry, S., Ségransan, D., Pepe, F., Benz, W., Bertaux, J.-L., Bouchy, F. & Dumusque, X. (2011). arXiv1109.2497M.
Meibom, S., Mathieu, R.D. & Stassun, K.G. (2007). Astrophys. J. Lett. 665, L155L158.
Mielke, S.P., Kiang, N.Y., Blankenship, R.E., Gunner, M.R. & Mauzerall, D. (2011). Bioch. Biophys. Acta 1807, 12311236.
Milo, R. (2009). Photosyn. Res. 101, 5967.
Nelson, D.L., Lehninger, A.L. & Cox, M.M. (2008). Principles of Biochemistry, 4th edn. MacMillan, New York, USA.
O'Malley-James, J.T., Raven, J.A., Cockell, C.S. & Greaves, J.S. (2012). Astrobiology 12, 115124.
Petigura, E.A., Howard, A.W. & Marcy, G.W. (2013). Proc. Natl. Acad. Sci. USA 110, 1927319278.
Pohorille, A. & Pratt, L.R. (2012). Orig. Life Evol. Biosph. 42, 405409.
Quintana, E.V. & Lissauer, J.J. (2010). In Planets in Binary Star Systems. ed. N., Haghighipour. Astrophysics and Space Science Library, Vol. 366: Springer, Berlin, Germany.
Raven, J. (2007). Nature 448, 418.
Raymond, J., Siefert, J.L., Staples, C.R. & Blankenship, R.E. (2003). Mol. Biol. Evol. 21, 541554.
Ritchie, R.J. & Runcie, J.W. (2013). J. Photochem. Photobiol. 89, 370383.
Rugheimer, S., Kaltenegger, L., Segura, A., Linsky, J. & Mohanty, S. (2015). Astrophys. J. 809, 5772.
Sage, R.E. (2003). New Phytol. 161, 341370.
Silvestri, N.M., Hawley, S.L. & Oswalt, T.D. (2005). Astron. J. 129, 24282450.
Shkolnik, E.L. & Barman, T.S. (2014). Astron. J. 148, 6477.
Shkolnik, E.L., Rolph, K.A., Peacock, S. & Barman, T.S. (2014). Astrophys. J. Lett. 796, 2025.
Tarter, J.C. et al. (2007). Astrobiology 7, 3065.
Tian, F. (2009). Astrophys. J. 703, 905909.
Tian, F., France, K., Linsky, J.L., Mauas, P.J.D. & Vieytes, M.C. (2014). Earth Planet. Sci. Lett. 385, 2227.
Van Dover, C.L. (2000). The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, New Jersey, USA.
Wandel, A. (2015). Int. J. Astrobiol. 14, 511516.
Wang, J., Fischer, D.A., Xie, J.-W. & Ciardi, D.R. (2014). Astrophys. J. 791, 111127.
Ward, L.M., Kirschvink, J.L., Fischer, W.W. (2015). Orig. Life Evol. Biosph. (in press, online August 19, 2015). doi:10.1007/s11084-015-9460-3.
Wayne, R.P. (1992). J. Photochem. Photobiol. A: Chem. 62, 379396.
West, A.A., Hawley, S.L., Bochanski, J.J., Covey, K.R., Reid, I.N., Dhital, S., Hilton, E.J. & Masuda, M. (2008). Astron. J. 135(3), 785795.
Wolstencroft, R.D. & Raven, J.A. (2002). Icarus 157, 535548.
Wu, Y. & Lithwick, Y. (2013). Astrophys. J. 772, 7486.
Zuckerman, B. (2014). Astrophys. J. Lett. 791, 2731.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed