Skip to main content
×
Home
    • Aa
    • Aa

Prior indigenous technological species

  • Jason T. Wright (a1) (a2) (a3)
Abstract
Abstract

One of the primary open questions of astrobiology is whether there is extant or extinct life elsewhere the solar system. Implicit in much of this work is that we are looking for microbial or, at best, unintelligent life, even though technological artefacts might be much easier to find. Search for Extraterrestrial Intelligence (SETI) work on searches for alien artefacts in the solar system typically presumes that such artefacts would be of extrasolar origin, even though life is known to have existed in the solar system, on Earth, for eons. But if a prior technological, perhaps spacefaring, species ever arose in the solar system, it might have produced artefacts or other technosignatures that have survived to present day, meaning solar system artefact SETI provides a potential path to resolving astrobiology's question. Here, I discuss the origins and possible locations for technosignatures of such a prior indigenous technological species, which might have arisen on ancient Earth or another body, such as a pre-greenhouse Venus or a wet Mars. In the case of Venus, the arrival of its global greenhouse and potential resurfacing might have erased all evidence of its existence on the Venusian surface. In the case of Earth, erosion and, ultimately, plate tectonics may have erased most such evidence if the species lived Gyr ago. Remaining indigenous technosignatures might be expected to be extremely old, limiting the places they might still be found to beneath the surfaces of Mars and the Moon, or in the outer solar system.

Copyright
Corresponding author
e-mail: astrowright@gmail.com
References
Hide All
AbdrakhimovA.M., BasilevskyA.T., HeadJ.W. & RobinsonM.S. (2011). Luna 17/Lunokhod 1 and Luna 21/Lunokhod 2 Landing Sites as Seen by the Lunokhod and LRO Cameras. In Lunar and Planetary Science Conference (p. 2220). Volume 42 of Lunar and Planetary Inst. Technical Report. http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2220.pdf.
BasilevskyA.T. & HeadJ.W. (1998). The geologic history of Venus: a stratigraphic view. J. Geophys. Res.: Planets 103, 85318544. http://dx.doi.org/10.1029/98JE00487. DOI: 10.1029/98JE00487.
Burke-WardR. (2000). Possible existence of extra-terrestrial technology in the Solar System. J. Br. Interplanet. Soc. 53, 212.
ĆirkovićM.M. & VukotićB. (2016). Long-term prospects: mitigation of supernova and gamma-ray burst threat to intelligent beings. Acta Astronaut. 129, 438446. DOI: 10.1016/j.actaastro.2016.10.005. arXiv:1611.06096.
CraddockR.A. & HowardA.D. (2002). The case for rainfall on a warm, wet early Mars. J. Geophys. Res. (Planets) , 107, 21–1. DOI: 10.1029/2001JE001505.
DaviesP.C.W. (2012). Footprints of alien technology. Acta Astronaut. 73, 250257. DOI: 10.1016/j.actaastro.2011.06.022.
DaviesP.C.W. & WagnerR.V. (2013). Searching for alien artifacts on the moon. Acta Astronaut. 89, 261265. DOI: 10.1016/j.actaastro.2011.10.022.
DenisenkoD. & LipunovV. (2013). MASDB2 identified with the manmade object. Astronomer's Telegram, 5616. http://www.astronomerstelegram.org/?read=5616.
FarleyK.A. et al. (2014). In situ radiometric and exposure age dating of the martian surface. Science 343, 1247166. DOI: 10.1126/science.1247166.
FassettC.I. & HeadJ.W. (2008). The timing of martian valley network activity: constraints from buffered crater counting. Icarus 195, 6189. DOI: 10.1016/j.icarus.2007.12.009.
FreitasR.A.Jr. (1983 a). Extraterrestrial intelligence in the Solar System – resolving the fermi paradox. J. Br. Interplanet. Soc. 36, 496500.
FreitasR.A.Jr. (1983 b). If they are here, where are they? Observational and search considerations. Icarus 55, 337343. DOI: 10.1016/0019-1035(83)90086-6.
FreitasR.A.Jr. & ValdesF. (1980). A search for natural or artificial objects located at the earth-moon libration points. Icarus 42, 442447. DOI: 10.1016/0019-1035(80)90106-2.
GertzJ. (2016). ET probes: looking here as well as there. ArXiv e-prints, arXiv:1609.04635.
GormanA. (2005). The archaeology of orbital space, (p. 338). http://search.informit.com.au/documentSummary;dn=045519755996948;res=IELENG.
GrotzingerJ.P. et al. (2015). Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350. DOI: 10.1126/science.aac7575.
Haqq-MisraJ. & KopparapuR.K. (2012). On the likelihood of non-terrestrial artifacts in the Solar System. Acta Astronaut. 72, 1520. DOI: 10.1016/j.actaastro.2011.10.010. arXiv:1111.1212.
HartM.H. (1975). Explanation for the absence of extraterrestrials on Earth. QJRAS 16, 128.
HoganJ. (1977). Inherit the Stars. A Del Rey book. Ballantine Books. https://books.google.com/books?id=en49Q415InQC.
IsaacsonH. et al. (2017). The Breakthrough Listen Search for Intelligent Life: Target Selection of Nearby Stars and Galaxies. ArXiv e-prints, arXiv:1701.06227.
KubrickS. (1968). 2001: A Space Odyssey. Metro-Goldwyn-Mayer.
LoebA. & TurnerE.L. (2012). Detection technique for artificially illuminated objects in the outer Solar System and beyond. Astrobiology, 12, 290294. DOI: 10.1089/ast.2011.0758. arXiv:1110.6181.
LowellP. (1895). Mars. Houghton, Mifflin. https://books.google.com/books?id=w9JJAAAAMAAJ.
MacLeodK. (2010). Cosmonaut Keep: The Opening Novel in An Astonishing New Future History. Engines of Light. Tom Doherty Associates. https://books.google.com/books?id=NpgqRMefzwgC.
MasurskyH., BoyceJ.M., DialA.L., SchaberG.G. & StrobellM.E. (1977). Classification and time of formation of Martian channels based on Viking data. J. Geophys. Res. 82, 40164038. DOI: 10.1029/JS082i028p04016.
MeloshH.J. (1988). The rocky road to panspermia. Nature 332, 687688. DOI: 10.1038/332687a0.
NivenL. (2007). The Draco Tavern. Tom Doherty Associates. https://books.google.com/books?id=WLuLgG6148IC.
PapagiannisM.D. (1978). Are we all alone, or could they be in the Asteroid Belt? QJRAS 19, 277.
PollackJ.B., KastingJ.F., RichardsonS.M. & PoliakoffK. (1987). The case for a wet, warm climate on early Mars. Icarus 71, 203224. DOI: 10.1016/0019-1035(87)90147-3.
RamirezR.M., KopparapuR., ZuggerM.E., RobinsonT.D., FreedmanR. & KastingJ.F. (2014). Warming early Mars with CO2 and H2 . Nat. Geosci. 7, 5963. DOI: 10.1038/ngeo2000. arXiv:1405.6701.
SawyerR. (2007). Far-Seer: Book One of the Quintaglio Ascension. The Quintaglio Trilogy. Tom Doherty Associates. https://books.google.com/books?id=YiNTxagEg0AC.
ShklovskiĭI. & SaganC. (1998). Intelligent Life in the Universe. Emerson-Adams Press. https://books.google.com/books?id=QrnoPwAACAAJ.
SquyresS.W. et al. (2004). In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306, 17091714. DOI: 10.1126/science.1104559.
SzalayJ.R. & HorányiM. (2016). Lunar meteoritic gardening rate derived from in situ LADEE/LDEX measurements. Geophys. Res. Lett., 43, 48934898. DOI: 10.1002/2016GL069148.
TaoY. & MullerJ.-P. (2016). Super-resolution restoration applied to the characterisation of dynamic surface changes on the Martian surface. In AAS/Division for Planetary Sciences Meeting Abstracts (p. 513.09). Volume 48 of AAS/Division for Planetary Sciences Meeting Abstracts.
TurcotteD.L. (1993). An episodic hypothesis for Venusian tectonics. J. Geophys. Res.: Planets 98, 1706117068. http://dx.doi.org/10.1029/93JE01775. DOI: 10.1029/93JE01775.
WagnerR.V., NelsonD.M., PlesciaJ.B., RobinsonM.S., SpeyererE.J. & MazaricoE. (2017). Coordinates of anthropogenic features on the Moon. Icarus 283, 92103. DOI: 10.1016/j.icarus.2016.05.011.
WayM.J., Del GenioA.D., KiangN.Y., SohlL.E., GrinspoonD.H., AleinovI., KelleyM. & CluneT. (2016). Was Venus the first habitable world of our Solar System? Geophys. Res. Lett. 43, 83768383. http://dx.doi.org/10.1002/2016GL069790. DOI: 10.1002/2016GL069790. 2016GL069790.
WellsL.E., ArmstrongJ.C. & GonzalezG. (2003). Reseeding of early earth by impacts of returning ejecta during the late heavy bombardment. Icarus 162, 3846. DOI: 10.1016/S0019-1035(02)00077-5.
WorthR.J., SigurdssonS. & HouseC.H. (2013). Seeding life on the moons of the outer planets via lithopanspermia. Astrobiology 13, 11551165. DOI: 10.1089/ast.2013.1028. arXiv:1311.2558.
WrightJ.T., MullanB., SigurdssonS. & PovichM.S. (2014). The Ĝ infrared search for extraterrestrial civilizations with large energy supplies. I. Background and justification. ApJ 792, 26. DOI: 10.1088/0004-637X/792/1/26. arXiv:1408.1133.
ZahnleK., DonesL. & LevisonH.F. (1998). Cratering rates on the Galilean Satellites. Icarus 136, 202222. DOI: 10.1006/icar.1998.6015.
ZalasiewiczJ., WilliamsM., HaywoodA. & EllisM. (2011). The anthropocene: a new epoch of geological time? Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 369, 835841. DOI: 10.1098/rsta.2010.0339.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 736 *
Loading metrics...

* Views captured on Cambridge Core between 1st June 2017 - 22nd October 2017. This data will be updated every 24 hours.