Skip to main content
×
×
Home

Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions

  • Jochen Jänchen (a1), Nina Feyh (a2), Ulrich Szewzyk (a2) and Jean-Pierre P. de Vera (a3)
Abstract

Motivated by findings of new mineral related water sources for organisms under extremely dry conditions on Earth we studied in an interdisciplinary approach the water sorption behaviour of halite, soil component and terrestrial Nostoc commune biofilm under Mars relevant environmental conditions. Physicochemical methods served for the determination of water sorption equilibrium data and survival of heterotrophic bacteria in biofilm samples with different water contents was assured by recultivation. Deliquescence of halite provides liquid water at temperatures <273 K and may serve as water source on Mars during the morning stabilized by the CO2 atmosphere for a few hours. The protecting biofilm of N. commune is rather hygroscopic and tends to store water at lower humidity values. Survival tests showed that a large proportion of the Alphaproteobacteria dominated microbiota associated to N. commune is very desiccation tolerant and water uptake from saturated NaCl solutions (either by direct uptake of brine or adsorption of humidity) did not enhance recultivability in long-time desiccated samples. Still, a minor part can grow under highly saline conditions. However, the salinity level, although unfavourable for the host organism, might be for parts of the heterotrophic microbiota no serious hindrance for growing in salty Mars-like environments.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions
      Available formats
      ×
Copyright
Corresponding author
e-mail: jochen.jaenchen@th-wildau.de
References
Hide All
Adesina, M.F., Lembke, A., Costa, R., Speksnijder, A. & Smalla, K. (2007). Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctoniasolani and Fusariumoxysporum: site-dependent composition and diversity revealed. Soil Biol. Biochem 39, 28182828.
Albertano, P. & Urzì, C. (1999). Structural interactions among epilithic cyanobacteria and heterotrophic microorganisms in roman hypogea. Microb. Ecol 38, 244252.
Amard, B. & Bertrand-Sarfati, J. (1997). Microfossils in 2000 Ma old cherty stromatolites of the Franceville Group, Gabon. Precambrian Res 81, 197221.
Baqué, M., de Vera, J.-P., Rettberg, P. & Billi, D. (2013). The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. ActaAstronautica 91, 180186.
Bibring, J.-P. et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307, 15761581.
Billi, D., Baqué, M., Smith, H. & McKay, C. (2013). Cyanobacteria from extreme deserts to space. Adv. Microbiol 3(6A), 8086. doi: 10.4236/aim.2013.36A010.
Böttger, U., de Vera, J.-P., Fritz, J., Weber, I., Hübers, H.-W. & Schulze-Makuch, D. (2012). Optimizing the detection of carotene in cyanobacteria in a martianregolith analogue with a Raman spectrometer for the ExoMarsmission. Planet. Space Sci 60, 356362.
Bruzewicz, D.A., Checco, A., Ocko, B.M., Lewis, E.R., McGraw, R.L. & Schwartz, S.E. (2011). Reversible uptake of water on NaCl nanoparticles at relative humidity below deliquescence point observed by noncontact environmental atomic farce microscopy. J. Chem. Phys 134, 044702-1-10.
Chevrier, V.F., Hanley, J. & Altheide, T.S. (2009). Stability of perchlorate hydrates and their liquid solutions at thePhoenix landing site, Mars. Geophys. Res. Lett 36, L10202. doi:10.1029/2009GL037497.
Coates, J., Michaelidou, U., Bruce, R., O'Connor, S., Crespi, J. & Achenbach, L. (1999). Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Environ. Microbiol 65, 52345241.
Davila, A.F., Gomez-Silva, B., de los Rios, A., Ascaso, C., Olivares, H., McKay, C.P. & Wierzchos, J. (2008). Halite deliquescence facilitatesendolithic microbial survival in the hyperarid core ofthe Atacama Desert. JGR 113, G01028. doi:10.1029/2007JG000561.
Davila, A.F., Duport, L.G., Melchiorri, R., Jänchen, J., Valea, S., de los Rios, A., Fairén, A.G., Möhlmann, D., McKay, C., Ascaso, C. & Wierzchos, J. (2010). Hygroscopic salts and the potential for life on Mars. Astrobiology 10, 617628.
Davila, A.F., Hawes, I., Ascaso, C. & Wierzchos, J. (2013). Salt deliquescence drives photosynthesis in the hyperarid Atacama Desert. Environ. Microbiol. Rep 5, 583587.
de los Rios, A., Valea, S., Ascaso, C., Davila, A., Kastovsky, J., McKay, C.P., Gómez-Silva, B. & Wierzchos, J. (2010). Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int. Microbiol 13, 7889.
Desai, C., Parikh, R.Y., Vaishnav, T., Shouche, Y.S. & Madamwar, D. (2009). Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res. Microbiol 160, 19.
de Vera, J.-P. et al. (2012). Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCamtechnology. Planet. Space Sci 74, 103110.
de Vera, J.-P., Schulze-Makuch, D., Khan, A., Lorek, A., Koncz, A., Möhlmann, D. & Spohn, T. (2014). Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet. Space Sci 98, 182190.
Dodds, W.K., Gudder, D.A. & Mollenhauer, D. (1995). The ecology of nostoc. J. Phycol 31, 218.
Ehling-Schulz, M., Bilger, W. & Scherer, S. (1997). UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoccommune. J. Bacteriol 179, 19401945.
England, L.S., Lee, H. & Trevors, J.T. (1993). Bacterial survival in soil: effect of clays and protozoa. Soil Biol. Biochem 25, 525531.
Flemming, H. & Wingender, J. (2010). The biofilm matrix. Nat. Rev. Microbiol 8, 623633.
Gauslaa, Y. & Coxson, D. (2011). Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany 89, 787798.
Gauslaa, Y., Coxson, D.S. & Solhaug, K.A. (2012). The paradox of higher light tolerance during desiccation in rare old forest cyanolichens than in more widespread co-occurring chloro- and cephalolichens. New Phytol 195, 812822.
Gendrin, A. et al. (2005). Sulfates in martian layered terrains: the OMEGA/Mars express view. Science 307, 15871591.
Hansen-Goos, H., Thomson, E.S. & Wettlaufer, J.S. (2014). On the edge of habitability and the extremes of liquidity. Planet. Space Sci 98, 169181.
Iivanainen, E.K., Martikainen, P.J., Räisänen, M.L. & Katila, M.-L. (1997). Mycobacteria in boreal coniferous forest soils. FEMS Microbiol. Ecol 23, 325332.
Jänchen, J., Bish, D.L., Möhlmann, D.T.F. & Stach, H. (2006). Investigation of the water sorption properties of Mars-relevant micro- and mesoporousminerals. Icarus 180, 353358.
Jänchen, J., Bauermeister, A., Feyh, N., de Vera, J.-P., Rettberg, P., Flemming, H.C. & Szewzyk, U. (2014). Water retention of selected microorganisms and Martian soil simulants under close to Martian environmental conditions. Icarus 98, 163168.
Lange, O.L., Kilian, E. & Ziegler, H. (1986). Water vapor uptake and photosynthesis in lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71(1), 104110.
Lange, O.L., Büdel, B., Meyer, A. & Kilian, E. (1993). Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. The Lichenologist 25, 175189.
Li, H., Xu, J., Liu, Y., Ai, S., Qin, F., Li, Z., Zhang, H. & Huang, Z. (2011). Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune. Carbohydr. Polym 83, 18211827.
Jouglet, D., Poulet, F., Milliken, R.E., Mustard, J.F., Bibring, J.-P., Langevin, Y., Gondet, B. & Gomez, C. (2007). Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature. J. Geophys. Res 112, E08S06. doi: 10.1029/2006JE002846.
Marshall, K.C. (1975). Clay mineralogy in relation to survival of soil bacteria. Annu. Rev. Phytopathol 13, 357373.
Martín-Torres, F.J. et al. (2015). Transient liquid water and water activity at Gale crater on Mars. Nat. Geosci 8, 357361.
McBain, J.W. & Bakr, A.M. (1926). A new sorption balance. J.Am.Chem. Soc 48, 690.
Meeßen, J., Sánchez, F., Brandt, A., Balzer, E.-M., de la Torre, R., Sancho, L., de Vera, J.-P. & Ott, S. (2013a). Extremotolerance and resistance of lichens: comparative studies on five species used in Astrobiological Research I. Morphological and anatomical characteristics. Orig. Life Evol. Biosph 43, 283303.
Meeßen, J., Sánchez, F., Sadowsky, A., de la Torre, R., Ott, S. & de Vera, J.-P. (2013b). Extremotolerance and resistance of lichens: comparative studies on five species used in Astrobiological Research II. Secondary lichen compounds. Orig. Life Evol. Biosph 43, 501526.
Möhlmann, D.T.F. (2008). The influence of van der Waals forces on the state of water in the shallow subsurface of Mars. Icarus 195, 131139.
Möhlmann, D.T.F. (2010a). Temporary liquid water in upper snow/ice sub-surfaces on Mars? Icarus 207, 140148.
Möhlmann, D. (2010b). The three types of liquid water in the surface of present Mars. Int. J. Astrobiol 9(1), 4549.
Möhlmann, D. (2011). Latitudinal distributrion of temporary liquid cryobrines on Mars. Icarus, 214, 236239.
Osterloo, M.M., Hamilton, V.E., Bandfield, J.L., Glotch, J.L., Baldridge, A.M., Christensen, P.R., Tornabene, L.L. & Anderson, F.S. (2008). Chloride-bearing meterialsin the southern highlands of Mars. Science 21, 16511654.
Paerl, H.W., Carr, N.G. & Whitton, B.A. (1982). Interactions with bacteria. In The Molecular Biology of Cyanobacteria, ed. Paerl, H.W., Carr, N.G. & Whitton, B.A. pp. 441461. University of California, Berkeley.
Paerl, H.W., Pinckney, J.L. & Steppe, T.F. (2000). Cyanobacterial–bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol 2, 1126.
Palacio, S., Azorin, J., Montserrat-Marti, G. & Ferrio, J.P. (2014). The crystallization water of gypsum rocks is a relevant water source for plants. Nat. Commun 5, 4660. DOI: 10.1038/ncomms5660.
Paulik, F., Paulik, K. & Arnold, M. (1992). Thermal decomposition of gypsum. Thermochim. Acta 200, 195204.
Potts, M., Whitton, B.A. & Potts, M. (2002). Nostoc. In The Ecology of Cyanobacteria, ed. Potts, M., Whitton, B.A. & Potts, M., pp. 465504. Springer, Netherlands.
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrine, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B., Gomez, C. & the OMEGA Team (2005). Phyllosilicates on Mars and implications for early Martian climate. Nature 438, 623627.
R Core Team R (2013). A Language and Environment for Statistical Computing RFoundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.
Renno, N.O. et al. (2009a). Physical and thermodynamical evidence for liquid water on Mars. Lunar Planet. Sci XL, Abstract 1440.
Renno, N.O. et al. (2009b). Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. J. Geophys. Res.-Planet 114, E00E03. doi:10.1029/2009JE003362.
Robinson, C.K. et al. (2015). Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ. Microbiol 17, 299315.
Sakamoto, T., Yoshida, T., Arima, H., Hatanaka, Y., Takani, Y. & Tamaru, Y. (2009). Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoccommune. Phycol. Res 57, 6673.
Sand-Jensen, K. & Jespersen, T.S. (2012). Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (−269 to 105 °C), pH and salt stress. Oecologia 169, 331339.
Schindelin, J. et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. methods 9, 676682.
Sergeev, V., Gerasimenko, L. & Zavarzin, G. (2002). The proterozoic history and present state of cyanobacteria. Microbiology, Kluwer Academic Publishers-Plenum Publishers, 71, 623637.
Tamaru, Y., Takani, Y., Yoshida, T. & Sakamoto, T. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacteriumNostoccommune. Appl. Environ. Microbiol 71, 73277333.
Taylor, P.A., Baibakov, K., Brown, S. & Hecht, M.H. (2006). Icarus 181, 375387.
Vaniman, D.T. et al. (2014). Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science 343, 6169. doi: 10.1126/science.1243480.
Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol 73, 52615267.
Wierzchos, J., Ascaso, C. & McKay, C.P. (2006). Endolithic cyanobacteria in haliterocks from the hyperarid core of the Atacama Desert. Astrobiology 6, 415422.
Wright, E.S., Yilmaz, L.S. & Noguera, D.R. (2012). DECIPHER, a search-based approach to chimera identification for 16S rRNASequences. Appl. Environ. Microbiol 78, 717725.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed