Skip to main content
×
×
Home

Raman spectroscopy of shocked gypsum from a meteorite impact crater

  • Connor Brolly (a1), John Parnell (a1) and Stephen Bowden (a1)
Abstract

Impact craters and associated hydrothermal systems are regarded as sites within which life could originate on Earth, and on Mars. The Haughton impact crater, one of the most well preserved craters on Earth, is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basement rocks, which have been shocked, are more abundant in endolithic organisms, when compared with un-shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopy and results show no significant statistical difference between gypsum that has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This shows that Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Raman spectroscopy of shocked gypsum from a meteorite impact crater
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Raman spectroscopy of shocked gypsum from a meteorite impact crater
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Raman spectroscopy of shocked gypsum from a meteorite impact crater
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
e-mail: c.brolly@abdn.ac.uk
References
Hide All
Beegle, L. et al. (2015). SHERLOC: Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals. In Aerospace Conference, 18.
Berenblut, B.J., Dawson, P. & Wilkinson, G.R. (1970). The Raman spectrum of gypsum. Spectrochimica Acta 27A, 18491863.
Bucio, L. et al. (2015). Phase transitions induced by shock compression on a gypsum mineral: X-ray and micro-Raman analysis. High Press. Res. 35(4), 355362.
Cabrol, N.A. et al. (1999). Hydrogeologic evolution of Gale Crater and its relevance to the exobiological exploration of Mars. Icarus 139, 235245.
Chapman, C.R. & Jones, K.L. (1977). Cratering and obliteration history of Mars. Annu. Rev. Earth Planet. Sci. 5, 515540.
Cockell, C.S. et al. (2002). Impact-induced microbial endolithic habitats. Meteorit. Planet. Sci. 37, 12871298.
Cockell, C.S. et al. (2003). Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Polar Biol. 26, 6269.
Ellery, A. & Wynn-Williams, D. (2003). Why Raman spectroscopy on Mars?— a case of the right tool for the right job. Astrobiology 3(3), 565579.
Farmer, J.D. & Des Marais, D.J. (1999). Exploring for a record of ancient Martian life. J. Geophys. Res. 104, 26,97726,995.
Haskin, L.A. et al. (1997). Raman spectroscopy for mineral identification and quantification for in situ planetary surface analysis: a point count method. J. Geophys. Res. 102(97), 1929319306.
Hogan, J.D. et al. (2012). Micro-scale deformation of gypsum during micro-indentation loading. Int. J. Rock Mech. Mining Sci. 54, 140149.
Jehlička, J., Edwards, H.G.M. & Oren, A. (2014). Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol. 80(11), 32863295.
Krishnamurthy, N. & Soots, V. (1971). Raman spectrum of gypsum. Can. J. Phys. 49, 885896.
Lane, N. & Martin, W.F. (2012). The origin of membrane bioenergetics. Cell 151(7), 14061416.
Lindgren, P. et al. (2009). Preservation of biological markers in clasts within impact melt breccias from the Haughton impact structure, Devon Island. Astrobiology 9(4), 391400.
Liu, Y., Wang, A. & Freeman, J.J. (2009). Raman, MIR, and NIR spectroscopic study of calcium sulphates: Gypsum, bassanite, and anhydrite. In 40th Lunar and Planetary Science Conference. p. 2128.
Naumov, M.V. (2002). Impact-generated hydrothermal systems: Data from Popigai, Kara, and Puchezh-Katunki impact structures. In: Plado, J. and Pesonen, L.J. (Eds.), Impacts in Precambrian shields. Springer-Verlag, Berlin, pp. 117171.
Newsom, H.E., Hagerty, J.J. & Thorsos, I.E. (2001). Location and sampling of aqueous and hydrothermal deposits in Martian impact craters. Astrobiology 1(1), 7188.
Osinski, G.R. & Spray, J.G. (2001). Impact-generated carbonate melts: evidence from the Haughton structure, Canada. Earth Planet. Sci. Lett. 194(1–2), 1729.
Osinski, G.R., Spray, J.G. & Lee, P. (2005). A case study of impact-induced hydrothermal activity: the Haughton impact structure, Devon Island, Canadian High Arctic. Meteorit. Planet. Sci. 40(12), 17891812.
Parnell, J. et al. (2004). Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars. Int. J. Astrobiol. 3(3), 247256.
Pérez, F.R. & Martinez-Frias, J. (2006). Raman spectroscopy goes to Mars. Spectrosc. Eur. 18(1), 1821.
Prasad, P.S.R., Pradhan, A. & Gowd, T.N. (2001). In situ micro-Raman investigation of dehydration mechanism in natural gypsum. Curr. Sci. 80(9), 12031207.
Ramkissoon, N.K. et al. (2014). Examining impact induced mineral devolatilisation using Raman spectroscopy. In 45th Lunar and Planetary Science Conference. p. Abstract 1891.
Robertson, P.B. & Sweeney, J.F. (1983). Haughton impact structure: structural and morphological aspects. Can. J. Earth Sci. 20(7), 11341151.
Rossi, A.P. et al. (2008). Large-scale spring deposits on Mars? J. Geophys. Res. E: Planets 113(8), 117.
Rull, F. et al. (2011). The Raman Laser Spectrometer (RLS) on the ExoMars 2018 Rover Mission. In 42nd Lunar and Planetary Science Conference.
Schwenzer, S.P. et al. (2012). Gale crater: formation and post-impact hydrous environments. Planet. Space Sci. 70(1), 8495.
Sherlock, S.C. et al. (2005). Re-evaluating the age of the Haughton impact event. Meteorit. Planet. Sci. 40(12), 17771787.
Thomson, B.J. et al. (2011). Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214(2), 413432.
Wang, A., Haskin, L.A. & Cortez, E. (1998). Prototype Raman spectroscopic sensor for in situ mineral characterization on planetary surfaces. Appl. Spectrosc. 52(4), 477487.
Wray, J.J. et al. (2010). Identification of the Ca-sulfate bassanite in Mawrth Vallis, Mars. Icarus 209(2), 416421.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed