Skip to main content

Shielding biomolecules from effects of radiation by Mars analogue minerals and soils

  • G. Ertem (a1), M. C. Ertem (a2), C. P. McKay (a3) and R. M. Hazen (a4)

Organic compounds have been delivered over time to Mars via meteorites, comets and interplanetary dust particles. The fate of organic material on the surface of Mars must be affected by the Martian environment, in particular by ultraviolet (UV) and other ionizing radiation. Penetration depth of UV radiation into soils is in the sub-millimetre to millimetre range and depends on the properties of the soil. The aim of this research is to study the possible protective role of Martian analogue minerals and soils for survivability of biomolecules against UV radiation and to compare their decomposition rates within a 1 mm-thick portion of the surface. Results demonstrated that minerals offer significant protection to biomolecules purine, pyrimidine and uracil against UV photolysis. In the absence of these minerals, organic compounds are completely degraded when subjected directly to UV photolysis equivalent to only 5 Martian day's exposure. However, similar UV exposure of organics dried from solution onto powdered calcium carbonate (calcite; CaCO3), calcium sulphate (anhydrite; CaSO4), clay-bearing Atacama dessert soil and 7 Å clay mineral kaolinite [Al2Si2O5(OH)4] results in only 1–2% loss of organics. Mixtures of purine and uracil with calcium carbonate exposed to gamma radiation of 3 Gy (3 Gray), which corresponds to approximately 15 000 days on Mars, results in up to 10% loss of organics. By contrast, these organic compounds completely decomposed upon mixing with iron oxide (Fe2O3) before UV irradiation. As the search for extinct or extant life on Mars has been identified as a goal of top priority in NASA's Mars Exploration Program and continues with several missions planned to the red planet by both NASA and the European Space Agency (ESA) in the next few decades, our findings may play a useful role in identifying optimal target sites on the Martian surface for future missions.

Corresponding author
Hide All
Bada, J.L. & Lazcano, A. (2002). Some like it hot, but not the first biomolecules. Science 296, 19821983.
Bada, J.L., Miller, S.L. & Zhao, M. (1995). The stability of amino acids at submarine hydrothermal vent conditions. Origins Life Evol. Biosph. 25, 111118.
Bernal, J.D. (1949). The physical basis of life. Proc. R. Soc. A, Lond. 62, 537558.
Bibring, J-P. et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307, 15761581.
Bland, P.A. & Smith, T.B. (2000). Meteorite accumulation on Mars. Icarus 144, 2126.
Chyba, C.F. & Sagan, C. (1992). Endogenous production, exogenous delivery, and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355, 125132.
Cronin, J.R. & Chang, S. (1993). Organic matter in meteorites: molecular and isotopic analyses of the murchison meteorite. In The Chemistry of Life's Origins, ed. Greenberg, J.M. et al. pp. 209258. Kluwer, The Netherlands.
Ertem, G., Hazen, R.M. & Dworkin, J.P. (2007). Sequence analysis of trimer isomers formed by montmorillonite catalysis in the reaction of binary monomer mixtures. Astrobiology 7, 715722.
Ertem, G., Steudel, A., Emmerich, K. & Lagaly, G. (2010). Correlation between the extent of catalytic activity and charge density of montmorillonites. Astrobiology 10, 743749.
Ferris, J.P., Ertem, G. & Agarwal, V.K. (1989). The adsorption of nucleotides and polynucleotides on montmorillonite clay. Orig. Life Evol. Biosph. 19, 153164.
Flynn, G.J. (1996). The delivery of organic matter from asteroids and comets to the early surface of Mars. Earth Moon Planets 72, 469474.
Flynn, G.J. & McKay, D.S. (1990). An assessment of the meteoritic contribution to the martian soil. J. Geophys. Res. 95, 1449714509.
Freissinet, C. et al. (2015). Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J. Geophys. Res., Planets 120, 495514.
Glavin, D.P. et al. (2013). Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. 118, 119.
Hansen, A.A., Merrison, J., Nørnberg, P., Aagaard, L. & Finster, K. (2005). Activity and stability of a complex bacterial soil community under simulated Martian conditions damage. Int. J. Astrobiol. 4, 135144.
Hassler, D.M. et al. (2014). Mars’ surface radiation environment measured with the Mars Science Laboratory's Curiosity rover. Science 343, 345452.
Hazen, R.M. (2005). Genesis: The Scientific Quest for Life's Origins. Joseph Henry Press of the National Academy, Washington, DC.
Hazen, R.M. (2006). Mineral surfaces and the prebiotic selection and organization of biomolecules (Presidential Address to the Mineralogical Society of America). Am. Mineral. 91, 17151729.
Hazen, R.M. (2013). Paleomineralogy of the Hadean Eon: a preliminary list. Am. J. Sci. 313, 807843.
Hecht, M.H. et al. (2009). Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325, 6467.
Horneck, G., Reitz, G., Rettberg, P., Schuber, M., Kochan, H., Möhlmann, D., Richter, L. & Seidlitz, H. (2000). A ground-based program for exobiological experiments on the International Space Station. Planet Space Science 48, 507513.
Kanavarioti, A. & Mancinelli, R.L. (1990). Could organic matter have been preserved on mars for 3.5 billion years? Icarus 84, 196202.
Keppler, F., Vigano, I., McLeod, A., Ott, U., Früchtl, M. & Röckmann, T. (2012). Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere. Nature 486, 9396.
Kim, J.D., Yee, N., Nanda, V. & Falkowski, P.G. (2013). Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides. Proc. Natl. Acad. Sci. USA 110, 1007310077.
Klochko, K., Hazen, R.M., Sverjensky, D.A. & Cody, G.D. (2012). Prebiotic selection of D-ribose on mineral surfaces. Miner. Mag. 76, 1946.
Köster, H.M. (1977). Die Berechnung Kristallchemischer Strukturformeln von 2:1 Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationenumtauschkapazitäten, sowie die Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten. Clay Miner. 12, 4554.
Kounaves, S.P. et al. (2009). The MECA wet chemistry laboratory on the 2007 phoenix Mars Scout Lander. J. Geophys. Res. 114, E00A19.
Leshin, L.A. et al. (2013). Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science 341(6153), Article number 1238937. doi: 10.1126/science.1238937.
Llorca, J. (2005). Organic matter in comets and cometary dust, Review paper. Int. Microbiol. 8, 512.
Love, S.G. & Brownlee, D.E. (1993). A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 307, 550553.
Marshall-Bowman, K., Ohara, S., Sverjensky, D.A., Hazen, R.M. & Cleaves, H.J. II. (2010). Catalytic peptide hydrolysis by mineral surface: implications for prebiotic chemistry. Geochim. Cosmochim. Acta 74, 58525861.
Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A.C. & McKay, C.P. (2010). Reanalysis of the Viking results suggests perchlorate and organics at mid-latitudes on Mars. J. Geophys. Res. 115, E12010. doi: 10.1029/2010JE003599.
Pizzarello, S., Cooper, G.W. & Flynn, G.J. (2006). The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. In Meteorites and the Early Solar System II, ed. Lauretta, D.S. & McSween, H.Y. Jr., pp. 625651.University of Arizona Press, Tuscon.
Quinn, R.C. et al. (2013). Perchlorate radiolysis on mars and the origin of martian soil reactivity. Astrobiology 13, 515520.
Sagan, C. & Pollack, J.B. (1974). Differential transmission of sunlight on Mars: biological implications. Icarus 21, 490495.
Schramm, L.S., Brownlee, D.E. & Wheelock, M.M. (1989). Major element composition of stratospheric micrometeorites. Meteoritics 24, 99112.
Schuerger, A.C., Mancinelli, R.L., Kern, R.G., Rothschild, L.J. & McKay, C.P. (2003). Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. Icarus 165, 253276.
Schuerger, A.C., Richards, J.T., Newcombe, D.A. & Venkateswaran, K. (2006). Rapid inactivation of seven Bacillus spp. Under simulated Mars UV irradiation. Icarus 181, 5262.
Sephton, M.A., Wright, I.P., Gilmour, I., de Leeuw, J.W., Grady, M.M. & Pillinger, C.T. (2002). High molecular weight organic matter in Martian meteorites. Planet. Space Sci. 50, 711716.
Sutter, B., Amundson, R. & Owen, J. (2006). Philadelphia Annual Meeting, Paper No. 216-7.
ten Kate, I.L., Gerry, J.R.C., Peters, Z., Quinn, R., Foing, B. & Ehrenfreund, P. (2005). Amino acid photostability on the Martian surface. Meteoritics Planet. Sci. 40, 11851193.
Wattel-Koekkoek, E.J.W., van Genuchten, P.P.L., Buurman, P. & van Lagen, B. (2001). Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma 99, 2749.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed