Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T06:48:53.569Z Has data issue: false hasContentIssue false

Skeleton growth under uniformly distributed force conditions: producing spherical sea urchins

Published online by Cambridge University Press:  11 November 2016

Polly Cheng
Affiliation:
Department of Biology, McMaster University, Hamilton, Ontario, Canada
Ankita Kambli
Affiliation:
Origins Institute, McMaster University, Hamilton, Ontario, Canada
Johnny Stone*
Affiliation:
Department of Biology, McMaster University, Hamilton, Ontario, Canada Origins Institute, McMaster University, Hamilton, Ontario, Canada SHARCNet, McMaster University, Hamilton, Ontario, Canada

Abstract

Sea urchin skeletons, or tests, comprise rigid calcareous plates, interlocked and sutured together with collagen fibres. The tests are malleable due to mutability in the collagen fibres that loosen during active feeding, yielding interplate gaps. We designed an extraterrestrial simulation experiment wherein we subjected actively growing sea urchins to one factor associated with zero-gravity environments, by growing them under conditions in which reactionary gravitational forces were balanced, and observed how their tests responded. Preventing tests from adhering to surfaces during active growth produced more-spherical bodies, realized as increased height-to-diameter ratios. Sea urchin tests constitute ideal systems for obtaining data that could be useful in extraterrestrial biology research, particularly in how skeletons grow under altered-gravity conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou Chakra, M. & Stone, J.R. (2011). Classifying echinoid skeleton models: testing ideas about growth and form. Paleobiology 37, 686695.CrossRefGoogle Scholar
Baron, C.J. (1988). Do mechanical forces explain patterns of growth and form in sea urchins? A finite element analysis. In Echinoderm Biology: Proc. Sixth Int. Echinoderm Conf., Victoria, 23–28 August 1987, ed. Burke, R.D., p. 786. A.A. Balkema, Rotterdam, The Netherlands.Google Scholar
Baron, C.J. (1990). What functional morphology cannot explain: a model of sea urchin growth and a discussion of the role of morphogenetic explanations in evolutionary biology. In The Unity of Evolutionary Biology (Proc. Fourth Int. Congress of Systematic and Evolutionary Biology), ed. Dudley, E.C., pp. 471488. Dioscorides Press, Portland, USA.Google Scholar
Baron, C.J. (1991). The Structural Mechanics and Morphogenesis of Extant Regular Echinoids Having Rigid Tests. PhD Thesis, University of California at Berkeley.Google Scholar
Cohen, J. (1992). A power primer. Psychol. Bull. 112, 155159.CrossRefGoogle ScholarPubMed
Dafni, J. (1980). Abnormal growth patterns in the sea urchin Tripneustes cf. gratilla (L.) under pollution (Echinodermata, Echinoidea). J. Exp. Mar. Biol. Ecol. 47, 259279.CrossRefGoogle Scholar
Dafni, J. (1983). Aboral depressions in the tests of the sea urchin Tripneustes cf. gratilla (L.) in the Gulf of Eilat, Red Sea. J. Exp. Mar. Biol. Ecol. 67, 115.CrossRefGoogle Scholar
Dafni, J. (1985). Effect of mechanical stress on the calcification pattern in regular echinoids. In Echinodermata – Proc. Fifth Int. Echinoderm Conf., Galway, September 1984, ed. Keegan, B.E. & O'Connor, B.D.S., pp. 233236. A.A. Balkema, Rotterdam, The Netherlands.Google Scholar
Dafni, J. (1986). A biomechanical model for the morphogenesis of regular echinoid tests. Paleobiology 12, 143160.CrossRefGoogle Scholar
Dafni, J. (2011). Echinoderms: strange is their middle name. http://www.dafni.com/dafni-sites/english-strange_is_their_middle_name.pdf.Google Scholar
Dafni, J. & Erez, J. (1987). Skeletal calcification patterns in the sea urchin Tripneustes gratilla elatensis (Echinoidea: Regularia). Mar. Biol. 95, 275287.CrossRefGoogle Scholar
David, B. & Mooi, R. (1996). Embryology supports a new theory of skeletal homologies for the phylum Echinodermata. Comptes rendus de l'Académie des Sciences, Paris. Series 3 319, 577584.Google Scholar
David, B. & Mooi, R. (1998). Major events in the evolution of echinoderms viewed through the light of embryology. In Echinoderms: San Francisco. Proc. Ninth Int. Echinoderm Conf., San Francisco, ed. Mooi, R. & Telford, M., pp. 2128. A.A. Balkema, Rotterdam, The Netherlands.Google Scholar
Ebert, T.A. (1988). Allometry, design and constraint of body components and of shape in sea urchins. J. Nat. Hist. 22, 14071425.CrossRefGoogle Scholar
Ellers, O. (1993). A mechanical model of growth in regular sea urchins: predictions of shape and a developmental morphospace. Proc. R. Soc. Lond. B 254, 123129.Google Scholar
Ellers, O. & Telford, M. (1992). Causes and consequences of fluctuating coelomic pressure in sea urchins. Biol. Bull. 182, 424434.CrossRefGoogle ScholarPubMed
Ellers, O., Johnson, A.S. & Moberg, P.E. (1998). Structural strengthening of urchin skeletons by collagenous sutural ligaments. Biol. Bull. 195, 136144.CrossRefGoogle ScholarPubMed
Fernandez, C. & Boudouresque, C. (1997). Phenotypic plasticity of Paracentrotuslividus (Echinodermata: Echinoidea). Mar. Ecol. Prog. Ser. 152, 145154.CrossRefGoogle Scholar
George, S.B., Lawrence, J.M. & Lawrence, A.L. (2004). Complete larval development of the sea urchin Lytechinus variegatus fed an artificial feed. Aquaculture 242, 217228.CrossRefGoogle Scholar
Hinegardner, R.T. (1969). Growth and development of the laboratory cultured sea urchin. Biol. Bull. 137, 465475.CrossRefGoogle ScholarPubMed
Hyman, L.H. (1955). The Invertebrates: Echinodermata. McGraw-Hill Book Company, New York, USA.Google Scholar
Jackson, R.T. (1912). Phylogeny of the Echini, with a Revision of Palaeozoic Species. Boston Society of Natural History, Memoirs, 1–490. http://dx.doi.org/10.5962/bhl.title.4630 CrossRefGoogle Scholar
Johnson, A.S., Ellers, O., Limire, J., Minor, M. & Leddy, H.A. (2002). Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins. Proc. Biol. Sci. 269, 215220.CrossRefGoogle ScholarPubMed
Lau, D., Lau, S., Quian, P.Y. & Qiu, J.W. (2009). Morphological plasticity and resource allocation in response to food limitation and hyposalinity in a sea urchin. J. Shellfish Res. 28, 383388.CrossRefGoogle Scholar
Mazur, J.E. & Miller, J.W. (1971). A description of the complete metamorphosis of the sea urchin Lytechinus variegatus cultured in synthetic sea water. Ohio J. Sci. 71, 3036.Google Scholar
McCarron, E., Burnell, G. & Mouzakitis, G. (2009). Growth assessment on three size classes of the purple sea urchin Paracentrotuslividus using continuous and intermittent feeding regimes. Aquaculture 288, 8391.CrossRefGoogle Scholar
Mooi, R. & David, B. (1997). Skeletal homologies of echinoderms. Paleontol. Soc. Pap. 3, 305335.CrossRefGoogle Scholar
Mooi, R., David, B. & Marchant, D. (1994). Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. In Echinoderms through Time, ed. David, B., Guille, A., Feral, J.-P. & Roux, M., pp. 8795. A. A. Balkema, Rotterdam, The Netherlands.Google Scholar
Moss, M.L. & Meehan, M. (1968). Growth of the echinoid test. Acta Anat. 69, 409444.CrossRefGoogle ScholarPubMed
Pfister, C.A. & Bradbury, A. (1996). Harvesting red sea urchins: recent effects and future predictions. Ecol. Appl. 6, 298310.CrossRefGoogle Scholar
Royles, R., Sofoluwe, A.B., Baig, M.M. & Currie, A.J. (1980). Behaviour of underwater enclosures of optimum design. Strain 16, 1220.CrossRefGoogle Scholar
Russell, M.P. (1998). Resource allocation plasticity in sea urchins rapid, diet induced, phenotypic changes in the green sea urchin, Stronglocentrotus droebachiensis (Müller). J. Exp. Mar. Biol. Ecol. 220, 114.CrossRefGoogle Scholar
Schatten, H., Chakrabarti, A., Taylor, M., Sommer, L., Levine, H., Anderson, K., Runco, M. & Kemp, R. (1999). Effects of spaceflight conditions on fertilization and embryogenesis in the sea urchin Lytechinus pictus . Cell Biol. Int. 23, 407415.CrossRefGoogle ScholarPubMed
Seilacher, A. (1979). Constructional morphology of sand dollars. Paleobiology 5, 191221.CrossRefGoogle Scholar
Sewell, M.A., Cameron, M.J. & McArdle, B.H. (2004). Developmental plasticity in larval development in the echinometrid sea urchin Evechinuschloroticus with varying food ration. J. Exp. Mar. Biol. Ecol. 309, 219237.CrossRefGoogle Scholar
Smith, A.B. (1984). Echinoid Palaeobiology. Allen & Unwin, London, UK.Google Scholar
Smith, M.M., Smith, L.C., Cameron, R.A. & Urry, L.A. (2008). The larval stages of the sea urchin, Stronglyocentrotus purpuratus . J. Morphol. 269, 713733.CrossRefGoogle Scholar
Sokal, R.R. & Rohlf, F.J. (1995). Biometry, 3rd edn. W. H. Freeman, New York, USA.Google Scholar
Tabachnick, B.G. & Fiddel, L.S. (2007). Using Multivariate Statistics. Pearson, Boston, USA.Google Scholar
Telford, M. (1985). Domes, arches and urchins: the skeletal architecture of echinoids (Echinodermata). Zoomorphology 105, 114124.CrossRefGoogle Scholar
Thompson, D.A.W. (1917). On Growth and Form. Press Syndicate of the University of Cambridge, Cambridge, UK.CrossRefGoogle Scholar
Vaїtilingon, D., Morgan, R., Grosjean, P., Gosselin, P. & Jangoux, M. (2001). Effects of delayed metamorphosis and food rations on the perimetamorphic events in echinoid Paracentrotuslividus (Lamarck, 1816) (Echinodermata). J. Exp. Mar. Biol. Ecol. 262, 4160.CrossRefGoogle Scholar
West-Eberhard, M.J. (2005). Phenotypic accommodation: adaptive innovation due to developmental plasticity. J. Exp. Zool. 304, 610618.CrossRefGoogle ScholarPubMed
West-Eberhard, M.J. (2003). Developmental Plasticity and Evolution. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar