Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T12:11:11.065Z Has data issue: false hasContentIssue false

Structural parallels between terrestrial microbialites and Martian sediments: are all cases of ‘Pareidolia’?

Published online by Cambridge University Press:  20 September 2016

Vincenzo Rizzo
Affiliation:
National Research Council – retired–, Via Repaci 22, 87036 Rende, Cosenza, Italy
Nicola Cantasano*
Affiliation:
National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean, Rende Research Unit, Via Cavour, 4–6, 87036 Rende, Cosenza, Italy

Abstract

The study analyses possible parallels of the microbialite-known structures with a set of similar settings selected by a systematic investigation from the wide record and data set of images shot by NASA rovers. Terrestrial cases involve structures both due to bio-mineralization processes and those induced by bacterial metabolism, that occur in a dimensional field longer than 0.1 mm, at micro, meso and macro scales. The study highlights occurrence on Martian sediments of widespread structures like microspherules, often organized into some higher-order settings. Such structures also occur on terrestrial stromatolites in a great variety of ‘Microscopic Induced Sedimentary Structures’, such as voids, gas domes and layer deformations of microbial mats. We present a suite of analogies so compelling (i.e. different scales of morphological, structural and conceptual relevance), to make the case that similarities between Martian sediment structures and terrestrial microbialites are not all cases of ‘Pareidolia’.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubrey, A., Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, F.J., Ehrenfreund, P. & Bada, J.L. (2006). Sulfate minerals and organic compound on Mars. Geology 34, 357360.CrossRefGoogle Scholar
Baqué, M., Scalzi, G., Rappow, R., Rettberg, P. & Billi, D. (2013). Biofilm and planktonik lifestyles differently support the resistance of the desert cyanobacterium Chroccocidiopsis under space and martian simulations. Orig. Life Evol. Biosph. 43, 377389.CrossRefGoogle Scholar
Barge, L.M. & Petruska, J. (2007). Iron precipitation patterns in gels; implications for the formation of hematite concretions at Meridiani Planum, Mars. Lunar and Planetary Science XXXVIII Conf. Abstracts 1676, Houston, Texas, USA.Google Scholar
Baumgartner, L.K., Spear, J.R., Bucley, D.H., Pace, N.R., Reid, R.P., Dupraz, C. & Vissker, P.T. (2009). Microbial diversity in modern marine stromatolites, Highborne cay, Bahamas. Environ. Microbiol. 11(10), 27102719.CrossRefGoogle ScholarPubMed
Bianciardi, G., Miller, J.D., Straat, P.A. & Levin, G.V. (2012). Complexity analysis of the Viking labeled release experiments. Int. J. Aeronaut. Space Sci. 13(1), 1426.CrossRefGoogle Scholar
Bianciardi, G., Rizzo, V. & Cantasano, N. (2014). Opportunity Rover's image analysis: microbialites on Mars? Int. J. Aeronaut. Space Sci. 15(4), 419433.CrossRefGoogle Scholar
Bianciardi, G., Rizzo, V., Farias, M.E. & Cantasano, N. (2015). Microbialites at gusev crater, Mars. Astrobiol. Outreach 3(5), 18.CrossRefGoogle Scholar
Bosak, T., Bush, J.W.M., Flynn, M.R., Liang, B., Ono, S., Petrof, A.P. & Sim, M.S. (2010). Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. Geobiology 8, 111.CrossRefGoogle ScholarPubMed
Brehm, U., Palinska, K.A. & Krumbein, W.E. (2004). Laboratory cultures of calcifying biomicrospheres generate oids. A contribution to the origin of oolites. Notebooks on Geology, Maintenon, Letters 2004/03, 1–6, (CG2004-L03).Google Scholar
Bums, R.G. & Burns, V.M. (1975). Mechanism for nucleation and growth of manganese nodules. Nature 225, 130131.Google Scholar
Carter, J., Poulet, F., Bibring, J.P., Mangold, N. & Murchie, S. (2013). Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. Planet. 118, 831858.CrossRefGoogle Scholar
Catling, D.C. (2004). On earth as it is on Mars? Nature 429, 707708.CrossRefGoogle ScholarPubMed
Chan, M.A., Bietler, B., Parry, W.T., Ormö, J. & Komatsu, G. (2004). A possible terrestrial analogue for haematite concretions on Mars. Nature 429, 731734.CrossRefGoogle ScholarPubMed
Chan, M.A., Bietler, B., Parry, W.T., Ormö, J. & Komatsu, G. (2005). Red rock and red planet diagenesis: comparisons of Earth and Mars concretions. Geol. Soc. Am. 15(8), 410.Google Scholar
Chan, M.A., Johnson, C.M., Beard, B.L., Bowman, J.R. & Parry, W.T. (2006). Iron isotopes constrain the pathways and formation mechanisms of terrestrial oxide concretions: a tool for tracing iron cycling on Mars? Geosphere 2, 324332.CrossRefGoogle Scholar
Chen, M., Schliep, M., Willows, R.D., Cai, Z.L., Neilan, B.A. & Scheer, H. (2010). A red-shifted chlorophyll. Science 329, 13181319.CrossRefGoogle ScholarPubMed
Clark, B.C. et al. (2005). Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 40, 7394.CrossRefGoogle Scholar
Coates, J.D. & Achenbach, L.A. (2004). Microbial perchlorate reduction: rocket-fueled metabolism. Nat. Rev. Microbiol. 27, 569580.CrossRefGoogle Scholar
Coates, J.D., Michaelidou, U., O'Connor, S.M., Bruce, R.A. & Achenbach, L.A. (2000). The diverse microbiology of (per) chlorate reduction. In Perchlorate in Environment, ed. Urbansky, E.D., pp. 257270. Kl uwer Academic/Plenum, New York.CrossRefGoogle Scholar
Dupraz, C., Vissker, P.T., Baumgartner, L.K. & Reid, R.P. (2004). Microbe-mineral interactions: early carbonate precipitation in a hypersaline mats (Ekeuthera Island, Bahamas). Sedimentology 51, 745765.CrossRefGoogle Scholar
Ehlmann, B.L., Mustard, J.F., Murchie, S., Bibring, J.P., Meunier, A., Fraeman, A.A. & Langevin, Y. (2011). Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 5360.CrossRefGoogle ScholarPubMed
Eriksson, P.G., Simpson, E.L., Eriksson, K.A., Stein, G.L. & Sarker, S. (2000). Muddy roll-up structures in siliclastic interdune beds of the ca. 1.8 GA Old Waterberg Group, South Africa. Palaios 15, 177183.2.0.CO;2>CrossRefGoogle Scholar
Fernandez-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R. & Knoll, A.H. (2005). The Rio Tinto basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 149167.CrossRefGoogle Scholar
Folk, R.L. (1980). Petrology of Sedimentary Rocks, pp. 182. Hemphill Publishing Company, Austin, Texas, USA.Google Scholar
Folk, R.L. & Taylor, L.A. (2002). Nannobacterial alteration of pyroxenes in Martian meteorite ALH 84001. Meteor. Planet. Sci. 37, 10571070.CrossRefGoogle Scholar
Gerdes, G. (2007). Structures left by modern microbial mats in their host sediments. In Atlas of Microbial Mat Features within the Clastic Rock Record, ed. Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W. & Catuneau, O., pp. 538. Elseiver, Amsterdam.Google Scholar
Grilli-Caiola, M.G. & Billi, D. (2011). Effects of nitrogen limitation and starvation on Chroccocidiopsis (Chrococcales). New Phytol. 133(4), 563571.Google Scholar
Grotzinger, J.P. & Knoll, A.H. (1999). Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313358.CrossRefGoogle ScholarPubMed
Grotzinger, J.P. et al. (2011). Mars sedimentary Geology: key concepts and outstanding questions. Astrobiology 11(1), 7787.CrossRefGoogle ScholarPubMed
Grotzinger, J.P. et al. (2014). A habitable fluvio-lacustrine environment at yellowknife bay, gale crater, Mars. Science 343, 114.CrossRefGoogle ScholarPubMed
Hoffmann, H.J. (1969). Attributes of stromatolites. Geol. Surv. Can. Pap. 69, 3958.Google Scholar
Hoover, R.B. (2011). Fossils of cyanobacteria in CL1 carbonaceous meteorites. J. Cosmol., 13. http://cosmology.com/Life102.html Google Scholar
Jepsen, S.M., Priscu, J.C., Grimm, R.E. & Bullock, M.A. (2007). The potential for Lithoautotrophic life on Mars: application to shallow interfacial Water Environments. Astrobiology 7(2), 342354.CrossRefGoogle ScholarPubMed
Jolliff, B.L. & McLennan, S.M. (2006). Evidence for water at Meridiani. Elements 2(3), 163167.CrossRefGoogle Scholar
Knoll, A.H., Worndle, S. & Kah, L.C. (2013). Covariance of microfossil assemblages and microbialite textures across an upper Mesoproterozoic carbonate platform. Palaios 28(7), 453470.CrossRefGoogle Scholar
Komar, P.D. (1976). Beach Processes and Sedimentation, pp. 429. Prentice-Hall, Engelwood Cliffs, New Jersey.Google Scholar
Krumbein, W.E. (1983). Stromatolites–the challenge of a term in space and time. Precamb. Res. 20, 493531.CrossRefGoogle Scholar
Lamond, R.E. & Tapanila, L. (2003). Embedment cavities in lacustrine stromatolites: evidences of animal interactions from Cenozoic carbonates in U.S.A. and Kenya. Palaios 18, 445453.2.0.CO;2>CrossRefGoogle Scholar
Logan, B. (1998). A review of chlorate and perchlorate-respiring microorganisms. Bioremediat. J. 2, 6979.CrossRefGoogle Scholar
Loope, D.B., Kettler, R. & Weber, K.A. (2010). Follow the water: connecting a CO2 reservoir and bleached sandstone to iron-rich concretions in the Navajo Sandstone of south-central Utah, USA. Geology 38(11), 9991002.CrossRefGoogle Scholar
Loope, D.B., Kettler, R.M. & Weber, K.A. (2011). Morphologic clues to the origins of iron-oxide-cemented spheroids, boxworks, and pipelike concretions, Navajo Sandstone of south-central Utah, U.S.A. J. Geol. 119, 505520.CrossRefGoogle Scholar
McIntyre, I.G., Prufert-Bebout, L. & Ried, R.P. (2000). The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian Stromatolites. Sedimentology 47, 915921.CrossRefGoogle Scholar
McKay, C.P. (2004). Wet and cold thick atmosphere on early Mars. J. Phys. France 121, 283288.CrossRefGoogle Scholar
McKay, D.S., Gibson, E.K. Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, D.F., Maechling, C.R. & Zare, R.N. (1996). Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273, 924930.CrossRefGoogle ScholarPubMed
McKay, C.P. et al. (2013). The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life. Astrobiology 13(4), 334353.CrossRefGoogle Scholar
McLennan, S.M. et al. (2005). Provenience and diagenesis of the evaporate-bearing Burns Formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95121.CrossRefGoogle Scholar
Murchie, S.L. et al. (2009). A synthesis of martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. Planet. 114, E00D06.CrossRefGoogle Scholar
Navarro-Gonzalez, R., Vargas, E., de la Rosa, J., Raga, A.C. & McKay, C.P. (2010). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115, 111.Google Scholar
Noffke, N. (2003). Microbially induced sedimentary structures: formation and applications to sedimentology. In Encyclopedia of Sediments and sedimentary Rocks, ed. Middleton, C., pp. 439441. Kluwer, Dordrecht.Google Scholar
Noffke, N. (2015). Ancient sedimentary structures in the <3.7b Ga Gillespie Lake Member, Mars, that Compare in macroscopic morphology, spatial associations, and temporal succession with terrestrrial microbialites. Astrobiology 15(2), 124.CrossRefGoogle Scholar
Noffke, N. & Awramik, S. (2013). Stromatolites and MISS: differences between relatives. GSA Today 23, 59.CrossRefGoogle Scholar
Ojha, L., Wilhelm, M.B., Murchie, S.L., McEwen, A.S., Wray, J.J., Hanley, J., Massé, M. & Chojnacki, M. (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. Lett. 8, 15. DOI:10.1038/NGEO2546.Google Scholar
Paerl, H.W., Steppe, T.F. & Reid, R.P. (2001). Bacterially mediated precipitation in marine stromatolites. Environ. Microbiol. 3, 123130.CrossRefGoogle ScholarPubMed
Parro, V. et al. (2005). Instruments development to search for biomarkers on Mars: terrestrial acidophile, iron-powered chemiolithoautotrophic communities as model systems. Planet. Space Sci. 53(7), 729737.CrossRefGoogle Scholar
Perry, R.S. et al. (2007). Defining biominerals and organominerals: direct and indirect indicators of life. Sediment. Geol. 201, 157179.CrossRefGoogle Scholar
Pope, M.C., Grotzinger, J.P. & Schreiber, P.C. (2000). Evaporitic subtidal stromatolites produced in situ precipitation: textures, facies and temporal significance. J. Sediment. Res. 70, 11391151.CrossRefGoogle Scholar
Potter, S.L. & Chan, M.A. (2007). Joint controlled fluid flow patterns in Jurassic Navajo Sandstone: analog implications for Mars hematite. Geol. Soc. Am., 39, 6284.Google Scholar
Potter, S.L., Chan, M.A., Petersen, E.U., Dyar, M.D. & Sklute, E. (2011). Characterization of Navajo Sandstone Concretions: mars comparisons and criteria for distinguishing diagenetic origins. Earth Planet. Sci. Lett. 301, 444456.CrossRefGoogle Scholar
Riding, R. (1999). The term stromatolite: towards and essential definition. Lethaia 32(4), 321330.CrossRefGoogle Scholar
Riding, R. (2006). Microbial carbonates: processes and products in time and space. In 17th International Sedimentological Congress, ed. Nemeth, K., Manville, V. & Kano, K., Vol. A, pp. 12. Elsevier, Amsterdam. Fukuoka, Japan, Abstracts.Google Scholar
Riding, R. (2008). Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geol. Croatica 61(2–3), 73103.CrossRefGoogle Scholar
Riding, R. (2011). The nature of Stromatolites: 3,500 Million years of History and a Century of Research. In Advances in Stromatolite Geobiology, ed. Reitner, J. et al. , vol. 131, pp. 2974. Lecture Notes in Earth Sciences. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Riding, R. & Tomás, S. (2006). Stromatolite reef crusts, early Cretaceous, Spain: bacterial origin of in-situ-precipitated peloid microspar? Sedimentology 53, 2334.CrossRefGoogle Scholar
Rizzo, V. & Cantasano, N. (2009). Possibile organosedimentary structures on Mars. Int. J. Astrobiol. 8(4), 267280.CrossRefGoogle Scholar
Rizzo, V. & Cantasano, N. (2011). Textures on Mars: evidences of a biogenic environment. Memorie della Società Astronomica Italiana 82(2), 348357.Google Scholar
Rizzo, V., Farias, M.E., Cantasano, N., Billi, D., Contreras, M., Pontenani, F. & Bianciardi, G. (2015). Structures/textures of living/fossil microbialites and their implications in biogenicity, an astrobiological point of view. Appl. Cell Biol. 4(3), 6582.Google Scholar
Schneider, D., Arp, G., Reimer, A., Reitner, J. & Daniel, R. (2013). Phylogenetic analysis of a microbialite-forming microbial Mat from a hypersaline lake of the Kiritimati Atoll, Central Pacific. PLoS ONE 8(6), 114.CrossRefGoogle ScholarPubMed
Souza-Egipsy, V., González-Toril, E., Zettler, E., Amaral-Zettler, L., Aqilera, A. & Amils, R. (2008). Prokariotic community structure in algal photosynthetic biofilms from extreme acid streams in Rio Tinto (Huelva, Spain). Int. Microbiol. 11(4), 251260.Google Scholar
Spadafora, A., Perri, E., McKenzie, J. & Vasconcelos, C. (2010). Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites. Sedimentology 57, 2740.CrossRefGoogle Scholar
Sprachta, S., Camoin, G., Golubic, S. & LeCampion, T. (2001). Microbialites in a modern lagoonal environment: nature and distribution, Tikehau Atoll (French Polynesia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 175, 103124.CrossRefGoogle Scholar
Squyres, S.W. & Knoll, A.H. (2005). Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240, 110.CrossRefGoogle Scholar
Srivastava, N.K. (1999). Lagoa Salgada (Rio de Janeiro) recent stromatolites. In Studios Geologicos e Paleontologicos do Brasil, Schobbenhaus, C., ed. Campos, D.A., Queiroz, E.T., Winge, M., Berber-Bonn, M. http://www.unb.br/jg/sigep/sigep/sido041.htm Google Scholar
Stiles, C.A., Mora, C.I. & Driese, S.G. (2001). Pedogenic iron-manganese nodules invertisols: a new proxy for paleoprecipitation? Geology 29, 943946.2.0.CO;2>CrossRefGoogle Scholar
Ten Kate, I.L. (2010). Organics on Mars? Astrobiology 10(6), 589603.CrossRefGoogle ScholarPubMed
Van Houten, F.B. & Bhattacharya, D.P. (1982). Phanerozoic oolitic ironstones-geologic record and facies model. Annu. Rev. Earth Planet. Sci. 10, 441457.CrossRefGoogle Scholar
Vologdin, A.G. (1962). The Oldest Algae of the USSR, pp. 657. Academy of Sciences of the USSR, Moscow.Google Scholar
Walter, R.W. (1972). Stromatolites and the Biostratigraphy of the Australian Precambrian and Cambrian, pp. 190. The Paleontological Association, London, Special Paper 11.Google Scholar
Walter, R.W. (1976). Stromatolites. In Development in Sedimentology, ed. Walter, R.M., vol. 20, pp. 790. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.Google Scholar
Weber, K.A., Spanbauer, T.L., Wacey, D., Kilburn, M.R., Loope, D.B. & Kettler, R.M. (2012). Biosignatures link microorganisms to iron mineralization in a paleoaquifer. Geology 40(8), 747750.CrossRefGoogle Scholar