Skip to main content Accessibility help

Structural parallels between terrestrial microbialites and Martian sediments: are all cases of ‘Pareidolia’?

  • Vincenzo Rizzo (a1) and Nicola Cantasano (a2)


The study analyses possible parallels of the microbialite-known structures with a set of similar settings selected by a systematic investigation from the wide record and data set of images shot by NASA rovers. Terrestrial cases involve structures both due to bio-mineralization processes and those induced by bacterial metabolism, that occur in a dimensional field longer than 0.1 mm, at micro, meso and macro scales. The study highlights occurrence on Martian sediments of widespread structures like microspherules, often organized into some higher-order settings. Such structures also occur on terrestrial stromatolites in a great variety of ‘Microscopic Induced Sedimentary Structures’, such as voids, gas domes and layer deformations of microbial mats. We present a suite of analogies so compelling (i.e. different scales of morphological, structural and conceptual relevance), to make the case that similarities between Martian sediment structures and terrestrial microbialites are not all cases of ‘Pareidolia’.


Corresponding author


Hide All
Aubrey, A., Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, F.J., Ehrenfreund, P. & Bada, J.L. (2006). Sulfate minerals and organic compound on Mars. Geology 34, 357360.
Baqué, M., Scalzi, G., Rappow, R., Rettberg, P. & Billi, D. (2013). Biofilm and planktonik lifestyles differently support the resistance of the desert cyanobacterium Chroccocidiopsis under space and martian simulations. Orig. Life Evol. Biosph. 43, 377389.
Barge, L.M. & Petruska, J. (2007). Iron precipitation patterns in gels; implications for the formation of hematite concretions at Meridiani Planum, Mars. Lunar and Planetary Science XXXVIII Conf. Abstracts 1676, Houston, Texas, USA.
Baumgartner, L.K., Spear, J.R., Bucley, D.H., Pace, N.R., Reid, R.P., Dupraz, C. & Vissker, P.T. (2009). Microbial diversity in modern marine stromatolites, Highborne cay, Bahamas. Environ. Microbiol. 11(10), 27102719.
Bianciardi, G., Miller, J.D., Straat, P.A. & Levin, G.V. (2012). Complexity analysis of the Viking labeled release experiments. Int. J. Aeronaut. Space Sci. 13(1), 1426.
Bianciardi, G., Rizzo, V. & Cantasano, N. (2014). Opportunity Rover's image analysis: microbialites on Mars? Int. J. Aeronaut. Space Sci. 15(4), 419433.
Bianciardi, G., Rizzo, V., Farias, M.E. & Cantasano, N. (2015). Microbialites at gusev crater, Mars. Astrobiol. Outreach 3(5), 18.
Bosak, T., Bush, J.W.M., Flynn, M.R., Liang, B., Ono, S., Petrof, A.P. & Sim, M.S. (2010). Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. Geobiology 8, 111.
Brehm, U., Palinska, K.A. & Krumbein, W.E. (2004). Laboratory cultures of calcifying biomicrospheres generate oids. A contribution to the origin of oolites. Notebooks on Geology, Maintenon, Letters 2004/03, 1–6, (CG2004-L03).
Bums, R.G. & Burns, V.M. (1975). Mechanism for nucleation and growth of manganese nodules. Nature 225, 130131.
Carter, J., Poulet, F., Bibring, J.P., Mangold, N. & Murchie, S. (2013). Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. Planet. 118, 831858.
Catling, D.C. (2004). On earth as it is on Mars? Nature 429, 707708.
Chan, M.A., Bietler, B., Parry, W.T., Ormö, J. & Komatsu, G. (2004). A possible terrestrial analogue for haematite concretions on Mars. Nature 429, 731734.
Chan, M.A., Bietler, B., Parry, W.T., Ormö, J. & Komatsu, G. (2005). Red rock and red planet diagenesis: comparisons of Earth and Mars concretions. Geol. Soc. Am. 15(8), 410.
Chan, M.A., Johnson, C.M., Beard, B.L., Bowman, J.R. & Parry, W.T. (2006). Iron isotopes constrain the pathways and formation mechanisms of terrestrial oxide concretions: a tool for tracing iron cycling on Mars? Geosphere 2, 324332.
Chen, M., Schliep, M., Willows, R.D., Cai, Z.L., Neilan, B.A. & Scheer, H. (2010). A red-shifted chlorophyll. Science 329, 13181319.
Clark, B.C. et al. (2005). Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 40, 7394.
Coates, J.D. & Achenbach, L.A. (2004). Microbial perchlorate reduction: rocket-fueled metabolism. Nat. Rev. Microbiol. 27, 569580.
Coates, J.D., Michaelidou, U., O'Connor, S.M., Bruce, R.A. & Achenbach, L.A. (2000). The diverse microbiology of (per) chlorate reduction. In Perchlorate in Environment, ed. Urbansky, E.D., pp. 257270. Kl uwer Academic/Plenum, New York.
Dupraz, C., Vissker, P.T., Baumgartner, L.K. & Reid, R.P. (2004). Microbe-mineral interactions: early carbonate precipitation in a hypersaline mats (Ekeuthera Island, Bahamas). Sedimentology 51, 745765.
Ehlmann, B.L., Mustard, J.F., Murchie, S., Bibring, J.P., Meunier, A., Fraeman, A.A. & Langevin, Y. (2011). Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 5360.
Eriksson, P.G., Simpson, E.L., Eriksson, K.A., Stein, G.L. & Sarker, S. (2000). Muddy roll-up structures in siliclastic interdune beds of the ca. 1.8 GA Old Waterberg Group, South Africa. Palaios 15, 177183.
Fernandez-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R. & Knoll, A.H. (2005). The Rio Tinto basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 149167.
Folk, R.L. (1980). Petrology of Sedimentary Rocks, pp. 182. Hemphill Publishing Company, Austin, Texas, USA.
Folk, R.L. & Taylor, L.A. (2002). Nannobacterial alteration of pyroxenes in Martian meteorite ALH 84001. Meteor. Planet. Sci. 37, 10571070.
Gerdes, G. (2007). Structures left by modern microbial mats in their host sediments. In Atlas of Microbial Mat Features within the Clastic Rock Record, ed. Schieber, J., Bose, P.K., Eriksson, P.G., Banerjee, S., Sarkar, S., Altermann, W. & Catuneau, O., pp. 538. Elseiver, Amsterdam.
Grilli-Caiola, M.G. & Billi, D. (2011). Effects of nitrogen limitation and starvation on Chroccocidiopsis (Chrococcales). New Phytol. 133(4), 563571.
Grotzinger, J.P. & Knoll, A.H. (1999). Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313358.
Grotzinger, J.P. et al. (2011). Mars sedimentary Geology: key concepts and outstanding questions. Astrobiology 11(1), 7787.
Grotzinger, J.P. et al. (2014). A habitable fluvio-lacustrine environment at yellowknife bay, gale crater, Mars. Science 343, 114.
Hoffmann, H.J. (1969). Attributes of stromatolites. Geol. Surv. Can. Pap. 69, 3958.
Hoover, R.B. (2011). Fossils of cyanobacteria in CL1 carbonaceous meteorites. J. Cosmol., 13.
Jepsen, S.M., Priscu, J.C., Grimm, R.E. & Bullock, M.A. (2007). The potential for Lithoautotrophic life on Mars: application to shallow interfacial Water Environments. Astrobiology 7(2), 342354.
Jolliff, B.L. & McLennan, S.M. (2006). Evidence for water at Meridiani. Elements 2(3), 163167.
Knoll, A.H., Worndle, S. & Kah, L.C. (2013). Covariance of microfossil assemblages and microbialite textures across an upper Mesoproterozoic carbonate platform. Palaios 28(7), 453470.
Komar, P.D. (1976). Beach Processes and Sedimentation, pp. 429. Prentice-Hall, Engelwood Cliffs, New Jersey.
Krumbein, W.E. (1983). Stromatolites–the challenge of a term in space and time. Precamb. Res. 20, 493531.
Lamond, R.E. & Tapanila, L. (2003). Embedment cavities in lacustrine stromatolites: evidences of animal interactions from Cenozoic carbonates in U.S.A. and Kenya. Palaios 18, 445453.
Logan, B. (1998). A review of chlorate and perchlorate-respiring microorganisms. Bioremediat. J. 2, 6979.
Loope, D.B., Kettler, R. & Weber, K.A. (2010). Follow the water: connecting a CO2 reservoir and bleached sandstone to iron-rich concretions in the Navajo Sandstone of south-central Utah, USA. Geology 38(11), 9991002.
Loope, D.B., Kettler, R.M. & Weber, K.A. (2011). Morphologic clues to the origins of iron-oxide-cemented spheroids, boxworks, and pipelike concretions, Navajo Sandstone of south-central Utah, U.S.A. J. Geol. 119, 505520.
McIntyre, I.G., Prufert-Bebout, L. & Ried, R.P. (2000). The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian Stromatolites. Sedimentology 47, 915921.
McKay, C.P. (2004). Wet and cold thick atmosphere on early Mars. J. Phys. France 121, 283288.
McKay, D.S., Gibson, E.K. Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, D.F., Maechling, C.R. & Zare, R.N. (1996). Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273, 924930.
McKay, C.P. et al. (2013). The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life. Astrobiology 13(4), 334353.
McLennan, S.M. et al. (2005). Provenience and diagenesis of the evaporate-bearing Burns Formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95121.
Murchie, S.L. et al. (2009). A synthesis of martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. Planet. 114, E00D06.
Navarro-Gonzalez, R., Vargas, E., de la Rosa, J., Raga, A.C. & McKay, C.P. (2010). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115, 111.
Noffke, N. (2003). Microbially induced sedimentary structures: formation and applications to sedimentology. In Encyclopedia of Sediments and sedimentary Rocks, ed. Middleton, C., pp. 439441. Kluwer, Dordrecht.
Noffke, N. (2015). Ancient sedimentary structures in the <3.7b Ga Gillespie Lake Member, Mars, that Compare in macroscopic morphology, spatial associations, and temporal succession with terrestrrial microbialites. Astrobiology 15(2), 124.
Noffke, N. & Awramik, S. (2013). Stromatolites and MISS: differences between relatives. GSA Today 23, 59.
Ojha, L., Wilhelm, M.B., Murchie, S.L., McEwen, A.S., Wray, J.J., Hanley, J., Massé, M. & Chojnacki, M. (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. Lett. 8, 15. DOI:10.1038/NGEO2546.
Paerl, H.W., Steppe, T.F. & Reid, R.P. (2001). Bacterially mediated precipitation in marine stromatolites. Environ. Microbiol. 3, 123130.
Parro, V. et al. (2005). Instruments development to search for biomarkers on Mars: terrestrial acidophile, iron-powered chemiolithoautotrophic communities as model systems. Planet. Space Sci. 53(7), 729737.
Perry, R.S. et al. (2007). Defining biominerals and organominerals: direct and indirect indicators of life. Sediment. Geol. 201, 157179.
Pope, M.C., Grotzinger, J.P. & Schreiber, P.C. (2000). Evaporitic subtidal stromatolites produced in situ precipitation: textures, facies and temporal significance. J. Sediment. Res. 70, 11391151.
Potter, S.L. & Chan, M.A. (2007). Joint controlled fluid flow patterns in Jurassic Navajo Sandstone: analog implications for Mars hematite. Geol. Soc. Am., 39, 6284.
Potter, S.L., Chan, M.A., Petersen, E.U., Dyar, M.D. & Sklute, E. (2011). Characterization of Navajo Sandstone Concretions: mars comparisons and criteria for distinguishing diagenetic origins. Earth Planet. Sci. Lett. 301, 444456.
Riding, R. (1999). The term stromatolite: towards and essential definition. Lethaia 32(4), 321330.
Riding, R. (2006). Microbial carbonates: processes and products in time and space. In 17th International Sedimentological Congress, ed. Nemeth, K., Manville, V. & Kano, K., Vol. A, pp. 12. Elsevier, Amsterdam. Fukuoka, Japan, Abstracts.
Riding, R. (2008). Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geol. Croatica 61(2–3), 73103.
Riding, R. (2011). The nature of Stromatolites: 3,500 Million years of History and a Century of Research. In Advances in Stromatolite Geobiology, ed. Reitner, J. et al. , vol. 131, pp. 2974. Lecture Notes in Earth Sciences. Springer-Verlag, Berlin.
Riding, R. & Tomás, S. (2006). Stromatolite reef crusts, early Cretaceous, Spain: bacterial origin of in-situ-precipitated peloid microspar? Sedimentology 53, 2334.
Rizzo, V. & Cantasano, N. (2009). Possibile organosedimentary structures on Mars. Int. J. Astrobiol. 8(4), 267280.
Rizzo, V. & Cantasano, N. (2011). Textures on Mars: evidences of a biogenic environment. Memorie della Società Astronomica Italiana 82(2), 348357.
Rizzo, V., Farias, M.E., Cantasano, N., Billi, D., Contreras, M., Pontenani, F. & Bianciardi, G. (2015). Structures/textures of living/fossil microbialites and their implications in biogenicity, an astrobiological point of view. Appl. Cell Biol. 4(3), 6582.
Schneider, D., Arp, G., Reimer, A., Reitner, J. & Daniel, R. (2013). Phylogenetic analysis of a microbialite-forming microbial Mat from a hypersaline lake of the Kiritimati Atoll, Central Pacific. PLoS ONE 8(6), 114.
Souza-Egipsy, V., González-Toril, E., Zettler, E., Amaral-Zettler, L., Aqilera, A. & Amils, R. (2008). Prokariotic community structure in algal photosynthetic biofilms from extreme acid streams in Rio Tinto (Huelva, Spain). Int. Microbiol. 11(4), 251260.
Spadafora, A., Perri, E., McKenzie, J. & Vasconcelos, C. (2010). Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites. Sedimentology 57, 2740.
Sprachta, S., Camoin, G., Golubic, S. & LeCampion, T. (2001). Microbialites in a modern lagoonal environment: nature and distribution, Tikehau Atoll (French Polynesia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 175, 103124.
Squyres, S.W. & Knoll, A.H. (2005). Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240, 110.
Srivastava, N.K. (1999). Lagoa Salgada (Rio de Janeiro) recent stromatolites. In Studios Geologicos e Paleontologicos do Brasil, Schobbenhaus, C., ed. Campos, D.A., Queiroz, E.T., Winge, M., Berber-Bonn, M.
Stiles, C.A., Mora, C.I. & Driese, S.G. (2001). Pedogenic iron-manganese nodules invertisols: a new proxy for paleoprecipitation? Geology 29, 943946.
Ten Kate, I.L. (2010). Organics on Mars? Astrobiology 10(6), 589603.
Van Houten, F.B. & Bhattacharya, D.P. (1982). Phanerozoic oolitic ironstones-geologic record and facies model. Annu. Rev. Earth Planet. Sci. 10, 441457.
Vologdin, A.G. (1962). The Oldest Algae of the USSR, pp. 657. Academy of Sciences of the USSR, Moscow.
Walter, R.W. (1972). Stromatolites and the Biostratigraphy of the Australian Precambrian and Cambrian, pp. 190. The Paleontological Association, London, Special Paper 11.
Walter, R.W. (1976). Stromatolites. In Development in Sedimentology, ed. Walter, R.M., vol. 20, pp. 790. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.
Weber, K.A., Spanbauer, T.L., Wacey, D., Kilburn, M.R., Loope, D.B. & Kettler, R.M. (2012). Biosignatures link microorganisms to iron mineralization in a paleoaquifer. Geology 40(8), 747750.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed