Skip to main content
×
×
Home

UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances

  • Francisco Javier Sánchez (a1), Joachim Meeßen (a2), M.ª del Carmen Ruiz (a3), Leopoldo G.ª Sancho (a4), Sieglinde Ott (a2), Carlos Vílchez (a3), Gerda Horneck (a5), Andres Sadowsky (a2) and Rosa de la Torre (a1)...
Abstract

Many experiments were carried out in order to evaluate the survival capacity of extremotolerant lichens when facing harsh conditions, including those of outer space or of simulated Martian environment. For further progress, a deeper study on the physiological mechanisms is needed that confer the unexpected levels of resistance detected on these symbiotic organisms. In this work, the response of the lichenized green algae Trebouxia sp. (a predominant lichen photobiont) to increasing doses of UV-C radiation is studied. UV-C (one of the most lethal factors to be found in space together with vacuum and cosmic-ionizing radiation with high atomic number and energy (HZE) particles) has been applied in the present experiments up to a maximum dose analogue to 67 days in Low Earth Orbit (LEO). For that purpose we selected two extremotolerant and space-tested lichen species in which Trebouxia sp. is the photosynthetic partner: the crustose lichen Rhizocarpon geographicum and the fruticose lichen Circinaria gyrosa. In order to evaluate the effect of the physiological state of the lichen thallus (active when wet and dormant when dry) and of protective structures (cortex and photoprotective pigments) on the resistance of the photobiont to UV-C, four different experimental conditions were tested: (1) dry intact samples, (2) wet intact samples, (3) dry samples without cortex/acetone-rinsed and (4) wet samples without cortex/acetone-rinsed. After irradiation and a 72 hours period of recovery, the influence of UV-C on the two lichen's photobiont under each experimental approach was assessed by two complimentary methods: (1) By determining the photosystem II (PSII) activity in three successive 24 hours intervals (Mini-PAM fluorometer) to investigate the overall state of the photosynthetic process and the resilience of Trebouxia sp. (2) By performing high performance liquid chromatography (HPLC)-quantification of four essential photosynthetic pigments (chlorophyll a, chlorophyll b, β-carotene and lutein) of one sample of each species and dose. Results indicate that the physiological state of the thallus is the most important factor impairing the tolerance of Trebouxia sp. to UV-C radiation in both lichen species. Desiccated thalli were demonstrated to be more resistant to UV-C. No clear influence of UV-C radiation on the carotenoid content was detected. Comparing the respective doses applied, the individuals of R. geographicum are more sensitive than C. gyrosa.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances
      Available formats
      ×
Copyright
Corresponding author
e-mail: sanchezifj@gmail.com
References
Hide All
Ahmadjian, V. (1992). Basic mechanisms of signal exchange, recognition, and regulation in lichens. In Algae and Symbiosis, ed. Reisser, W., pp. 675697. Biopress Limited, Bristol.
Armstrong, G.A. & Hearst, J.E. (1996). Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J. 10, 228237.
Atwell, B.J., Kriedemann, P.E. & Turnbull, C.G.N. (eds) (1999). Plants in Action: Adaptation in Nature, Performance in Cultivation. Macmillan Education, Australia.
Björn, L.O. (2007). Stratospheric ozone, ultraviolet radiation and cryptogams. Biological Conservation 135(3), 326333.
Bornman, J.F. (1989). Target sites of UV-B radiation in photosynthesis of higher plants. J. Photochem. Photobiol. B: Biol. 4, 145158.
Britt, A.B. (1999). Molecular genetics of DNA repair in higher plants. Trends Plant Sci. 4(1), 2025.
Brodo, I.M., Sharnoff, S.D. & Sharnoff, S. (2001). Lichens of North America. Yale University Press, New Haven, CT.
Bubrick, P., Galun, M. & Frensdorff, A. (1984). Observations on free-living Trebouxia de Puymaly and Pseudotrebouxia Archibald, and evidence that both symbionts from Xanthoria-Parientina (L.) Th. Fr. can be found free-living in nature. New Phytol. 97, 455462.
Buffoni Hall, R. (2002). Effects of increased UV-B radiation on the lichen Cladonia arbuscula spp. mitis: UV-absorbing pigments and DNA damage. PhD Dissertation, Department of Cell and Organism Biology, Lund University, Sweden. http://tinyurl.com/d49kkbq
Castenholz, R.W. & Garcia-Pichel, F. (2002). Cyanobacterial responses to UV-radiation. In The Ecology of Cyanobacteria, ed. Whitton, B.A. & Potts, M., pp. 591611. Kluwer Academic Publishers, Dordrecht.
Castenholz, R.W. & Garcia-Pichel, F. (2012). Cyanobacterial responses to UV radiation. In Ecology of Cyanobacteria II, ed. Whitton, E. & Brian, A., pp. 481499. Springer, The Netherlands.
Cockell, C.S. & Knowland, J. (1999). Ultraviolet radiation screening compounds. Biol. Rev. Camb. Philos. Soc. 74(3), 311345.
Culberson, C.F. (1979). Chemical and Botanical Guide to Lichen Products. Otto Koeltz Science Publishers, Koenigstein, pp. 41, 161.
de la Torre Noetzel, R. (2002). Estudio de los efectos de la radiación UV sobre ecosistemas epilíticos. Tesis Doctoral, Universidad Complutense de Madrid.
de la Torre Noetzel, R., Sancho, L.G., Pintado, A., Rettberg, P., Rabbow, E., Panitz, C., Deutschmann, U., Reina, M. & Horneck, G. (2007a). BIOPAN experiment LICHENS on the Foton M2 mission Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. Adv. Space Res. 40, 16651671.
de la Torre, R., Garcia-Sancho, L. & Horneck, G. (2007b). Adaptation of the lichen Rhizocarpon geographicum to harsh high altitude conditions: relevance to a habitable Mars. In Responses of Organisms to Simulated Mars Environment (ROME), ed. Cockell, C.S. & Horneck, G., pp. 145150, ESA-SP 1299, ESA Publications Division, ESTEC, Noordwijk, The Netherlands.
de la Torre, R., et al. (2010). Survival of lichens and bacteria exposed to outer space conditions – Results of the Lithopanspermia experiments. Icarus 208(2), 735748.
de los Ríos, A., Ascaso, C., Wierzchos, J., Sancho, L.G. & Green, T.G.A. (2010). Space flight effects on lichen ultrastructure and physiology. In ‘Symbioses and Stress: Joint Ventures in Biology’ Cellular Origin, Life in Extreme Habitats and Astrobiology , ed. Seckbach, J. & Grube, M., Vol. 17, pp. 577593. Springer, Netherland.
de Vera, J.P. (2005). Grenzen des Überlebens: Flechten als Modellsystem für das Potential von Adaptationsmechanismen eines Symbioseorganismus unter Extrembedingungen. PhD Thesis, Heinrich-Heine-University, Düsseldorf.
de Vera, J.-P. & Ott, S. (2010b). Resistance of symbiotic eukaryotes. Survival to simulated space conditions and asteroid impact cataclysms. In ‘Symbioses and Stress: Joint Ventures in Biology’ Cellular Origin, Life in Extreme Habitats and Astrobiology , ed. Seckbach, J. & Grube, M., vol. 17, pp. 595611. Springer, Netherland.
de Vera, J.P., Boettger, U., de la Torre, R., Sánchez, F.J., Grunow, D., Schmitz, N., Lange, C., Hübers, H.-W., Jaumann, R., Spohn, T. & Co-I team of BIOMEX (2012). Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planet. Space Sci. 74, 103110.
Fahselt, D. (1994). Secondary biochemistry of lichens. Symbiosis 16, 117165.
Feuerer, T. (1991). Revision der europäischen Arten der Flechtengattung Rhizocarpon mit nichtgelben Lager und vielzelligen Sporen. Bibl. Lichenol. 39, 1218.
Floudas, D. et al. (2012). The Palaeozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089), 17151719.
Friedl, , (1995). Inferring taxonomic positions and testing genus level assignments in coccoid green lichen algae: a phylogenetic analysis of dl8S ribosomal RNA sequences from Dictyochlorposis reticulata and from members of the genus Myrmecia (Chlorophyta, Trebouxiophyceae cl. nov). J. Phycol. 31, 632639.
Gao, Y., Cui, Y., Xiong, W., Li, X. & Wu, Q. (2009). Effect of UV-C on algal evolution and differences in growth rate, pigmentation and photosynthesis between prokaryotic and eukaryotic algae. Photochem. Photobiol. 85, 774782.
Gargaud, M. (editor-in-chief), Amils, R., Cernicharo Quintanilla, J., Cleaves, H.J., Irvine, W.M., Pinti, D., Viso, M., (eds) (2011). Encyclopedia of Astrobiology. ISBN 978-3-642-11279-9. http://www.springerreference.com/docs/navigation.do?m=Encyclopedia+of+Astrobiology+(Physics+and+Astronomy)-book204
Gärtner, G. (1992). Taxonomy of symbiotic eukaryotic algae. In Algae and Symbioses: Plants, Animals, Fungi, Viruses. Interactions Explored, ed. Reisser, W., pp. 325338. Biopress Ltd, Bristol.
Gasulla, F. (2009). Insights on desiccation tolerance of the lichen photobiont Trebouxia sp. pl. in both thalline and isolated ones. PhD Thesis, Universitat de València Servei de Publicacions 2010. http://hdl.handle.net/10803/39081
Gautam, S., Singh, J. & Pant, A.B. (2011). Effect of UV-B radiations on the pigments of two Antarctic lichens of Schirmacher Oasis, East Antarctica. Pol. Polar Res. 32(3), 279287.
Green, T.G.A. & Lange, O.L. (1994). Photosynthesis in Poikilohydric Plants: A Comparison of Lichens and Bryophytes. In Ecophysiology of Photosynthesis (Springer Study Edition), Vol. 100, pp. 319341. Springer, Berlin, Heidelberg.
Heber, U., Soni, V. & Strasser, R.J. (2011). Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. Physiol. Plantarum 142(1), 6578.
Hedges, S.B., Blair, J.E., Venturi, M.L. & Shoe, J.L. (2004). A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4, 2.
Henssen, A. & Jahns, H.M. (1974). Lichenes. – Georg Thieme. Verlag, Stuttgart.
Holder, J.M. (1998). FT-Raman Spectroscopy of Antarctic Epilithic Lichens. PhD Thesis, University of Bradford, Bradford.
Horneck, G. (1999). European activities in exobiology in earth orbit: results and perspectives. Adv. Space Res. 23(2), 381386.
Horneck, G., Rettberg, P., Reitz, G., Wehner, J., Eschweiler, U., Strauch, K., Panitz, C., Starke, V., Baumstark-Khan, C. (2001). Protection of bacterial spores in space, a contribution to the discussion on Panspermia. Orig. Life Evol. Biosph. 31, 527547.
Horneck, G., Baumstark-Khan, C. & Facius, R. (2006). Radiation biology. In Fundamentals of Space Biology. Space Technology Library , vol. 18, pp. 291336. Springer, New York.
Huneck, S. (1999). The significance of lichens and their metabolites. Naturwissenchaften 86, 559570.
Huneck, S. & Yoshimura, I. (1996). Identification of Lichen Substances. Springer-Verlag, Berlin, Heidelberg, New York, pp. 19.
Jansen, M.A.K., Mattoo, A.K. & Edelman, M. (1999). D1-D2 protein degradation in the chloroplast. Complex light saturation kinetics. Eur. J. Biochem. 260, 527532.
Kappen, L., Schroeter, B., Scheidegger, C., Sommerkorn, M. & Hestmark, G. (1996 ). Cold resistance and metabolic activity of lichens below 0 °C. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission. Adv. Space Res. 18(12), 119128.
Kasting, J.F. (1993). Earth's early atmosphere. Science 259(5097), 920926.
Kirk, P.M., Cannon, P.F., David, J.C. & Stalpers, J.A. (2001). Ainsworth and Bisby's Dictionary of the Fungi, 9th edn. CAB International, Wallingford.
Kranner, I., Beckett, R., Hochman, A. & Nash, T.H. (2008). Desiccation-tolerance in Lichens: a review. Bryologist, 111(4), 576593.
Kroken, S. & Taylor, J.W. (2000). Phylogenetic species, reproductive mode, and specificity of the green alga trebouxia forming lichens with the fungal genus Letharia . Bryologist 103(4), 645660.
Lange, O.L. (1953). Hitze und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora 140, 3997.
Lange, O.L., Bilger, W., Rinke, S. & Schreiber, U. (1989). Chlorophyll fluorescence of lichens containing green and blue-green algae during hydration by water vapor and by addition of liquid water. Bot. Acta 102, 306313.
Lange, O.L., Green, T.G.A., Meyer, A. & Zellner, H. (2007). Water relations and carbon dioxide exchange of epiphytic lichens in the Namib fog desert. Flora 202, 479487.
Larkum, A.W.D. & Wood, W.F. (1993). The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrasses. Photosynth. Res. 36, 1723.
Larsson, P., Vecerová, K., Cempírková, H., Solhaug, K.A. & Gauslaa, Y. (2009). Does UV-B influence biomass growth in lichens deficient in sun-screening pigments? Environ. Exp. Bot. 67, 215221.
Lumbsch, H.T. et al. (2011). One hundred new species of lichenized fungi: a signature of undiscovered global diversity. Phytotaxa 18, 1127.
Meeßen, J., Sánchez, F.J., Brandt, A., Balzer, E.-M., de la Torre, R., Sancho, L.Gª., de Vera, J.-P. & Ott, S. (2013). Extremotolerance and resistance towards space conditions in lichens: Comparative studies on five species used in astrobiological research I. Morphological and anatomical characteristics. Orig. Life Evol. Biosph. 43(3), 283303.
Mogedas, B., Casal, C., Forján, E. & Vílchez, C. (2009). Beta-carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors. J. Biosci. Bioeng. 108(1), 4751.
Nash, T.H. (ed.) (2008). Lichen Biology, 2nd edn. Cambridge University Press, Cambridge.
Nicholson, W.L., Schuerger, A.C. & Setlow, P. (2005). The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutat. Res. 571, 249264.
Nybakken, L., Solhaug, K.A., Bilger, W. & Gauslaa, Y. (2004). The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140, 211216.
Olson, J.M. (2006). Photosynthesis in the Archean Era. Photosynth. Res. 88(2), 109117.
Onofri, S., de la Torre, R., de Vera, J-.P., Ott, S., Zucconi, L., Selbmann, L., Scalzi, G., Venkateswaran, K.J., Rabbow, E., Sánchez Iñigo, F.J. & Horneck, G. (2012). Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12(5), 508516.
Paerl, H. (1984). Cyanobacterial carotenoids: their roles in maintaining optimal photosynthetic production among aquatic bloom forming genera. Oecologia 61(2), 143149.
Raggio, J., Pintado, A., Ascaso, C., de la Torre, R., de los Ríos, A., Wierzchos, J., Horneck, G. & Sancho, L.G. (2011). Whole Lichen Thalli survive exposure to space conditions: results of Lithopanspermia experiment with Aspicilia fruticulosa . Astrobiology 11(4), 281292.
Rambold, G. & Triebel, D. (1992). The inter-lecanoralean associations. Bibl. Lichen 48, 1201.
Rettberg, P. & Rothschild, L.J. (2002). Ultraviolet radiation in planetary atmospheres and biological implications. In Astrobiology, The Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C., pp. 233243. Springer, Berlin, Heidelberg.
Rikkinen, J. (1995). What's behind the pretty colours? A study on the photobiology of lichens. Bryobrothera 4, 1239.
Rothschild, L.J. & Cockell, C.S. (1999). Radiation: microbial evolution, ecology, and relevance to Mars missions. Mutat. Res. 430(2), 281291.
Rozema, J. et al. (2002). The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. J. Photochem. Photobiol. B: Biol. 66, 212.
Sadowsky, A. & Ott, S. (2012). Photosynthetic symbionts in Antarctic terrestrial ecosystems: the physiological response of lichen photobionts to drought and cold. Symbiosis 58, 8190.
Salguero, A., León, R., Mariotti, A., de la Morena, B., Vega, J.M. & Vílchez, C. (2005). UV-A mediated induction of carotenoid accumulation in Dunaliella bardawil with retention of cell viability. Appl. Microbiol. Biotechnol. 66(5), 506511.
Sánchez, F.J., de la Torre, R., Sancho, L.Gª, Mateo-Martí, E., Martínez-Frías, J. & Horneck, G. (2010). Aspicilia fruticulosa: one of the most resistant organisms to outer space conditions and Mars simulated environment. In Special Issue: Abstracts from the 9th European Workshop on Astrobiology, Brussels, October 12–14, 2009. Orig. Life Evol. Biosph. 40(6), 546.
Sánchez, F.J., Mateo-Martí, E., Raggio, J., Meeßen, J., Martínez-Frías, J., Sancho, L.Gª., Ott, S. & de la Torre, R. (2012). The resistance of the lichen Circinaria gyrosa (nom. provis.) towards simulated Mars conditions – a model test for the survival capacity of an eukaryotic extremophile. Planet. Space Sci. 72(1), 102110.
Sancho, L.G., Schroeter, B. & del Prado, R. (2000). Ecophysiology and morphology of the globular erratic lichen Aspicilia fruticulosa (EVERSM.) FLAG. From Central Spain. New aspects in cryptogamic research. Bibl. Lichenol. 75, 137147.
Sancho, L.G., de la Torre, R., Horneck, G., Ascaso, C., de los Ríos, A., Pintado, A., Wierzchos, J. & Schuster, M. (2007). Lichens survive in space: results from 2005 LICHENS experiment. Astrobiology 7(3), 443454.
Sancho, L.G., de la Torre, R. & Pintado, A. (2008). Lichens, new and promising material from experiments in Astrobiology. Fungal Biol. Rev. 22, 103109.
Sanderson, M.J. (2003). Molecular data from 27 proteins do not support a Precambrian origin of land plants. Am. J. Bot. 90, 954956.
Sass, L. & Vass, I. (1998). Characterization of UV-B tolerance in lichens by photosystem II electron transport measurements. In Photosynthesis: Mechanisms and Effects, ed. Gareb, G., pp. 23812384. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Scalzi, G., Selbmann, L., Zucconi, L., Rabbow, E., Horneck, G., Albertano, P. & Onofri, S. (2012). LIFE Experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the International Space Station. Orig. Life Evol. Biosph. 42, 253262.
Schreiber, U., Bilger, W. & Neubauer, C. (1994). Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. Ecol. Stud. 100, 4970.
Sohrabi, M. (2012). Taxonomy and phylogeny of the manna lichens and allied species (Megasporaceae). PhD Thesis, Publications in Botany from the University of Helsinki. http://urn.fi/URN:ISBN:978-952-10-7400-4
Solhaug, K.A. & Gauslaa, Y. (1996). Parietin, a photoprotective secondary product of the lichen Xanthoria parietina . Oecologia 108, 412418.
Solhaug, K.A. & Gauslaa, Y. (2004). Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina . Plant Cell Environ. 27, 167176.
Solhaug, K.A., Gauslaa, Y., Nybakken, L. & Bilger, W. (2003). UV-induction of sun-screening pigments in Lichens. New Phytol. 158(1), 91100.
Sonesson, M., Callaghan, T.V. & Bjorn, L.O. (1995). Short-term effects of enhanced UV-B and CO2 on lichens at different latitudes. Lichenologist 27, 547557.
Strid, A., Chow, W.S. & Anderson, J.M. (1990). Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum . Biochim. Biophys. Acta 1020, 260268.
Strid, A., Chow, W.S. & Anderson, J.M. (1994). UV-B damage and protection at the molecular level in plants. Photosynth. Res. 39, pp. 475489.
Teramura, A.H. & Sullivan, J.H. (1994). Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth. Res. 39, 463473.
Tevini, M. & Häder, D.-P. (1985). Allgemeine Photobiologie. Georg Thieme Verlag, Stuttgart, p. 25.
Tschermak-Woess, E. (1978). The Phycobionts in the Section Cystophora of Chaenotheca, especially Dictyochloropsis splendid and Trebouxia simplex, spec. nova. Plant Syst. Evol. 129, 185208.
Tschermak-Woess, E. (1989). Developmental studies in trebouxioid algae and taxonomical consequences. Plant. Syst. Evol. 164, 161195.
Ünal, D. & Uyanikgil, Y. (2011). UV-B induces cell death in the lichen Physcia semipinnata (J.F. Gmel) Turk. J. Biol. 35, 137144.
Van de Poll, W.H., Hanelt, D., Hoyer, K., Buma, A.G.J. & Breeman, A.M. (2002). Ultraviolet-B-induced cyclobutane-pyrimidine dimer formation and repair in Arctic marine macrophytes. Photochem. Photobiol. 76, 493500.
Wynn-Williams, D.D., Holder, J.M. & Edwards, H.G.M. (2000). Lichens at the limits of life: past perspectives and modern technology. Bibl. Lichenol. 75, 275288.
Wynn-Williams, D.D., Edwards, H.G.M., Newton, E.M. & Holder, J.M. (2002a). Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces. Int. J. Astrobiol. 1, 3949.
Wynn-Williams, D.D. & Edwards, H.G.M. (2002b). Environmental UV radiation: biological strategies for protection and avoidance. In Astrobiology, The Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C., pp. 245260. Springer, Berlin, Heidelberg.
Yamazaki, J., Takahisa, S., Emiko, M. & Yasumaro, K. (2005). The stoichiometry and antenna size of the two photosystems in marine green algae, Bryopsis maxima and Ulva pertusa, in relation to the Alight environment of their natural habitat. J. Exp. Bot. 56(416), 15171523.
Yoon, H.S., Hackett, J.D., Ciniglia, C., Pinto, G. & Bhattacharya, D. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21, 809818.
Young, A.J., Phillip, D. & Savill, J. (1997). Carotenoids in higher plant photosynthesis. In Handbook of Photosynthesis, ed. Pessaraki, M., pp. 575596. Marcel Dekker, New York.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Astrobiology
  • ISSN: 1473-5504
  • EISSN: 1475-3006
  • URL: /core/journals/international-journal-of-astrobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed