Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T18:55:06.372Z Has data issue: false hasContentIssue false

245 GHz SiGe sensor system for gas spectroscopy

Published online by Cambridge University Press:  05 February 2015

Klaus Schmalz*
Affiliation:
IHP, Frankfurt, Oder D-15236, Germany. Phone: +49 335 5625 763
Ruoyu Wang
Affiliation:
IHP, Frankfurt, Oder D-15236, Germany. Phone: +49 335 5625 763
Wojciech Debski
Affiliation:
Silicon Radar GmbH, Frankfurt, Oder D-15236, Germany
Heiko Gulan
Affiliation:
Karlsruhe Institute of Technology, Karlsruhe D-76021, Germany
Johannes Borngräber
Affiliation:
IHP, Frankfurt, Oder D-15236, Germany. Phone: +49 335 5625 763
Philipp Neumaier
Affiliation:
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin D-12489, Germany
Heinz-Wilhelm Hübers
Affiliation:
Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin D-12489, Germany Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany
*
Corresponding author: K. Schmalz Email: schmalz@ihp-microelectronics.com

Abstract

A 245 GHz sensor system for gas spectroscopy is presented, which includes a SiGe receiver (RX), a SiGe transmitter (TX), and a 0.6 m long gas absorption cell between the TX and RX. The integrated local oscillators of the RX and the TX are controlled by two external phase locked loops (PLLs), whose reference frequencies are swept with constant frequency offset for a low IF of the RX. The RX consists of a differential low noise amplifier (LNA), an integrated 122 GHz local oscillator (LO) with 1/64 divider, a 90° differential hybrid, and active subharmonic mixer. The TX consists of an integrated 122 GHz LO with 1/64 divider, and a frequency doubler. The RX and TX are fabricated in 0.13 µm SiGe BiCMOS with ft/fmax of 300/500 GHz. Using external dielectric lenses for the TX and RX, the absorption spectrum of gaseous methanol has been measured. The reference frequency of the TX-PLL is modulated for frequency-modulation spectroscopy. The performance of the sensor system is demonstrated by measuring the 2f absorption spectrum (second harmonic detection) of gaseous methanol.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Medvedev, I.R.; Neese, C.F.; Plummer, G.M.; De Lucia, F.C.: Submillimeter spectroscopy for chemical analysis with absolute specificity. Opt. Lett., 35 (2010), 15331535.Google Scholar
[2] Pearson, J.C. et al. : Demonstration of a room temperature 2.48–2.75 THz coherent spectroscopy source. Rev. Sci. Instrum., 82 (2011), 093105, 9 pages.CrossRefGoogle ScholarPubMed
[3] Fosnight, A.M.; Moran, B.L.; Medvedev, I.R.: Chemical analysis of exhaled human breath using a terahertz spectroscopic approach. Appl. Phys. Lett., 103 (2013), 133703, 5 pages.Google Scholar
[4] Öjefors, E.; Heinemann, B.; Pfeiffer, U.R.: Active 220- and 325-GHz frequency multiplier chains in SiGe HBT technology. IEEE Trans. Microw. Theory Tech., 59 (2011), 13111318.CrossRefGoogle Scholar
[5] Öjefors, E.; Heinemann, B.; Pfeiffer, U.: Subharmonic 220- and 320-GHz SiGe HBT receiver front-ends. IEEE Trans. Microw. Theory Tech., 60 (2012), 13971404.Google Scholar
[6] Schmalz, K.; Mao, Y.; Borngräber, J.; Neumaier, P.; Hübers, H.-W.: Tunable 245 GHz transmitter and receiver in SiGe technology for gas spectroscopy. Electron. Lett., 50 (2014), 881882.Google Scholar
[7] Momeni, O.; Afshari, E.: A broadband mm-wave and terahertz traveling-wave frequency multiplier on CMOS. IEEE J. Solid-State Circuits, 46 (2011), 29662976.CrossRefGoogle Scholar
[8] Tomkins, A. et al. : A study of SiGe signal sources in the 220–330 GHz range, in Proc. IEEE Bipolar/BiCMOS Circuits Tech. Meeting (BCTM), Portland, Oregon, USA, 2012, 80–83.Google Scholar
[9] Pfeiffer, U.R. et al. : A 0.53 THz reconfigurable source array with up to 1 mW radiated power for terahertz imaging applications in 0.13 µm SiGe BiCMOS, in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, USA, 2014, 256–257.CrossRefGoogle Scholar
[10] Schmalz, K.; Wang, R.; Borngräber, J.; Debski, W.; Winkler, W.; Meliani, C.: 245 GHz SiGe transmitter with integrated antenna and external PLL, in IEEE MTT-S IMS Symp. Proc., Seattle, USA, 2013, 1–4.CrossRefGoogle Scholar
[11] Schmalz, K. et al. : Subharmonic 245 GHz SiGe receiver with antenna, in IEEE Proc. European Microwave. Int. Circuits Conf. (EuMiC), Nuremberg, Germany, 2013, 121–124.Google Scholar
[12] Schmalz, K. et al. : 245 GHz SiGe sensor system for gas spectroscopy, in IEEE Proc. European Microwave. Conf. (EuMC), Rome, Italy, 2014, 644–647.Google Scholar
[13] Neese, C.F.; Medvedev, I.R.; Plummer, G.M.; Frank, A.J.; Ball, C.D.; De Lucia, F.C.: Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity. IEEE Sens. J., 12 (2012), 25652574.Google Scholar
[14] Sun, H.; Ding, Y.J.; Zotova, I.B.: THz spectroscopy by frequency-tuning monochromatic THz source: from single species to gas mixtures. IEEE Sens. J., 10 (2010), 621629.Google Scholar
[15] Neumaier, P.F.-X.; Schmalz, K.; Borngräber, J.; Wylde, R.; Hübers, H.-W.: Terahertz gas-phase spectroscopy: chemometrics for security and medical applications. Analyst, 140 (2015), 213222.Google Scholar
[17] Rücker, H.; Heinemann, B.; Fox, A.: Half-Terahertz SiGe BiCMOS technology, in IEEE SiRF Symp. Dig., Santa Clara, USA, 2012, 129–132.Google Scholar
[18] Schmalz, K.; Borngräber, J.; Heinemann, B.; Rücker, H.; Scheytt, J.C.: A 245 GHz transmitter in SiGe technology, in IEEE RFIC Symp. Proc., Montreal, Canada, 2012, 195–198.CrossRefGoogle Scholar
[19] Schmalz, K.; Borngräber, J.; Mao, Y.; Rücker, H.; Weber, R.: A 245 GHz LNA in SiGe technology. IEEE Microw. Wirel. Compon. Lett., 22 (10) (2012), 553555.Google Scholar
[20] Rothman, L.S. et al. : The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 110 (2009), 533572.Google Scholar