Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T18:59:17.881Z Has data issue: false hasContentIssue false

80-GHz-band low-power sub-harmonic mixer IC with a bottom-LO-configuration in 130-nm SiGe BiCMOS

Published online by Cambridge University Press:  28 March 2016

Xin Yang
Affiliation:
The Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino Wakamatsu-ku, Kitakyushu-shi, Fukuoka, Japan
Xiao Xu
Affiliation:
The Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino Wakamatsu-ku, Kitakyushu-shi, Fukuoka, Japan
Takayuki Shibata
Affiliation:
Research Laboratories, DENSO CORPORATION, 500-1, Minamiyama, Komenoki-cho, Nisshin-shi, Aichi, Japan. Phone: +81-93-692-5358
Toshihiko Yoshimasu*
Affiliation:
The Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino Wakamatsu-ku, Kitakyushu-shi, Fukuoka, Japan
*
Corresponding author:T. Yoshimasu Email: yoshimasu@waseda.jp

Abstract

In this paper, a W-band (80 GHz) sub-harmonic mixer (SHM) IC is designed, fabricated and measured in 130-nm SiGe BiCMOS technology. The presented SHM IC makes use of a common emitter common collector transistor pair structure with a bottom-LO-configuration to decrease the LO power requirement and a tail current source to flatten the conversion gain. On-chip Marchand balun is designed for W-band on-wafer measurements. The SHM IC presented in this paper has exhibited a conversion gain of 3.9 dB at 80 GHz RF signal with an LO power of only −7 dBm at 39.5 GHz. The mixer core consumes only 0.68 mA at a supply voltage of 3.3 V.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Electromagnetic Compatibility and Radio Spectrum Matters (ERM); Short Range Devices; Road Transport and Traffic Telematics (RTTT); Short Range Radar Equipment Operating in the 77 to 81 GHz Band; Part 1: Technical Requirements and Methods of Measurement, European Telecommunications Standards Institute (ETSI) EN Standard 302 264–1 (V1.1.1), June 2009.Google Scholar
[2]Millimetre wave vehicular collision avoidance radars and radiocommunication systems for intelligent transport system applications, Recommendation International Telecommunication Union (ITU)-R M.1452–2, May 2012.Google Scholar
[3]Radio-frequency channel and block arrangements for fixed wireless systems operating in the 71–76 and 81–86 GHz bands, Recommendation International Telecommunication Union (ITU)-R F.2006, March 2012.Google Scholar
[4] Arbabian, A.; Callender, S.; Kang, S.; Rangwala, M.; Niknejad, A.M.: A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition. IEEE J. Solid-State Circuits, 48 (4) (2013), 10551071.Google Scholar
[5] Hung, J.J.; Hancock, T.M.; Rebeiz, G.M.: A 77 GHz SiGe sub-harmonic balanced mixer. IEEE J. Solid-State Circuits, 40 (11) (2005), 21672173.Google Scholar
[6] Sheng, L.; Jensen, J.C.; Larson, L.E.: A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter. IEEE J. Solid-State Circuits, 35 (9) (2000), 13291337.Google Scholar
[7] Svitek, R.; Raman, S.: 5–6 GHz SiGe active I/Q subharmonic mixers with power supply noise effect characterization. IEEE Microw. Wireless Compon. Lett., 14 (7) (2004), 319321.CrossRefGoogle Scholar
[8] Ojefors, E.; Heinemann, B.; Pfeiffer, U.R.: Subharmonic 220- and 320-GHz SiGe HBT receiver front-ends. IEEE Trans. Microw. Theory Tech., 60 (5) (2012), 13971404.Google Scholar
[9] Zhao, Y.; Öjefors, E.; Aufinger, K.; Meister, T.F.; Pfeiffer, U.R.: A 160-GHz subharmonic transmitter and receiver chipset in a SiGe HBT technology. IEEE Trans. Microw. Theory Tech., 60 (10) (2012), 32863299.Google Scholar
[10] Zhang, Z.; Chen, Z.; Tsui, L.; Lau, J.: A 930 MHz CMOS DC-offset-free direct-conversion 4-FSK receiver, in IEEE Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, San Francisco, USA, February 2001, 290291.Google Scholar
[11] Upadhyaya, P.; Rajashekharaiah, M.; Heo, D.: A 5.6-GHz CMOS doubly balanced sub-harmonic mixer for direct conversion-zero IF receiver, in 2004 IEEE Workshop on Microelectronics and Electron Devices, Boise, USA, February 2004, 129130.Google Scholar
[12] Syu, J.S.; Meng, C.; Wang, C.L.: A 2.4-GHz low-flicker-noise CMOS sub-harmonic receiver. IEEE Trans. Circuits Syst. I: Regul. Pap., 60 (2) (2013), 37447.CrossRefGoogle Scholar
[13] Fang, S.J.; Lee, S.T.; Allstot, D.J.; Bellaouar, A.: Even harmonic double-balanced active mixer for use in direct conversion receivers. IEEE J. Solid-State Circuits, 38 (10) (2003), 17621766.Google Scholar
[14] Tsai, J.H.; Huang, T.W.: 35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications. IEEE Trans. Microw. Theory Tech., 55 (10) (2007), 20752085.CrossRefGoogle Scholar
[15] Tsai, J.H.; Yang, H.Y.; Huang, T.W.; Wang, H.: A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology. IEEE Microw. Wireless Compon. Lett., 18 (8) (2008), 554556.CrossRefGoogle Scholar
[16] Wu, T.H.; Tseng, S.C.; Meng, C.C.; Huang, G.W.: GaInP/GaAs HBT sub-harmonic gilbert mixers using stacked-LO and leveled-LO topologies. IEEE Trans. Microw. Theory Tech., 55 (5) (2007), 880889.Google Scholar
[17] Maeda, K.; Taniguchi, E.; Ono, M.; Suematsu, N.; Takagi, T.: A 2 GHz band even harmonic type Si-MMIC active balanced CECCTP mixer, in 31st Eur. Microwave Conf., London, UK, September 2001, 14.Google Scholar
[18] Wang, C.-H. et al. : A 60 GHz transmitter with integrated antenna in 0.18 µm SiGe BICMOS technology, in IEEE Solid-State Circuits Conf. (ISSCC), Digest of Technical Papers, San Francisco, USA, February 2006, 659660.Google Scholar
[19] Yang, X.; Xu, X.; Zheng, S.; Shibata, T.; Yoshimasu, T.: A novel W-band bottom-LO-configured Sub-harmonic mixer IC in 130-nm SiGe BiCMOS, in Tenth Eur. Microwave Integrated Circuit Conf. (EuMIC), Paris, France, 6–7 Oct. 2015, 4 pages.Google Scholar
[20] Sullivan, P.J.; Xavier, B.A.; Ku, W.H.: (1999). Doubly balanced dual-gate CMOS mixer. IEEE J. Solid-State Circuits, 34 (6) (1999), 878881.Google Scholar
[21] Wang, L.; Xiong, Y.Z.; Zhang, B.; Hu, S.M.; Lim, T.G.: Millimeter-wave frequency doubler with transistor grounded-shielding structure in SiGe BiCMOS technology. IEEE Trans. Microw. Theory Tech., 59 (5) (2011), 13041310.Google Scholar
[22] Barnes, A.R.; Munda, P.; Jennings, R.; Moore, M.T.: A comparison of W-band monolithic resistive mixer architectures, in IEEE MTT-S Int. Microwave Symp. Digest, vol. 3, Seattle, WA, USA, June 2002, 18671870.Google Scholar
[23] Bryant, D.T.; Eye, R.; Carroll, J.M.; Allen, D.: Integrated LNA-sub-harmonic mixer for 77 GHz automotive radar applications using GaAs pHEMT technology, in IEEE Compound Semiconductor Integrated Circuit Symp., Monterey, California, USA, October 2004, 257259.Google Scholar
[24] Hwang, Y.J. et al. : A 78–114 GHz monolithic subharmonically pumped GaAs-based HEMT diode mixer. IEEE Microw. Wireless Compon. Lett., 12 (6) (2002), 209211.CrossRefGoogle Scholar
[25] Hwang, Y.J.; Wang, H.; Chu, T.H.: A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer. IEEE Microw. Wireless Compon. Lett., 14 (7) (2004), 313315.Google Scholar
[26] Ning, X. et al. : A 79 GHz sub-harmonic mixer design using a 1 µm InP DHBT technology, in Int. Conf. on Microwave and Millimeter Wave Technology (ICMMT), vol. 2, Shenzhen, China, May 2012, 14.Google Scholar
[27] Gawande, R. et al. : W-band IQ sub-harmonic mixers with low LO power for cryogenic operation in large arrays, in Ninth Eur. Microwave Integrated Circuit Conf. (EuMIC), Rome, Italy, October 2014, 301304.Google Scholar
[28] Xu, Z.; Cui, Y.; Xu, J.; Guo, J.; Qian, C.: Low cost W-band sub-harmonic mixer using quasi-MMIC technology, in IEEE Int. Wireless Symp. (IWS), Shenzhen, China, March 2015, 14.Google Scholar