Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-10-03T11:57:00.351Z Has data issue: false hasContentIssue false

From bulk toward micro-structured TiO2 ceramics for all-dielectric metamaterials at terahertz frequencies: what process?

Published online by Cambridge University Press:  29 September 2025

Djihad Amina Djemmah
Affiliation:
Centre de Nanosciences et de Nanotechnologies, university. Paris-Saclay, UMR 9001, CNRS, 10 bd T. Gobert, Palaiseau, France
Delphine Gourdonnaud
Affiliation:
IRCER, university. de Limoges, CNRS, UMR 7315, 12 rue Atlantis, Limoges, France
Feriel Laourine
Affiliation:
Centre de Nanosciences et de Nanotechnologies, university. Paris-Saclay, UMR 9001, CNRS, 10 bd T. Gobert, Palaiseau, France
David Bouville
Affiliation:
Centre de Nanosciences et de Nanotechnologies, university. Paris-Saclay, UMR 9001, CNRS, 10 bd T. Gobert, Palaiseau, France
Fayçal Bouamrane
Affiliation:
Laboratoire Albert Fert, CNRS/THALES, UMR 137, 1st Avenue Augustin Fresnel, Palaiseau, France
Jean-François Roux
Affiliation:
CROMA, university. Grenoble Alpes, university. Savoie Mont-Blanc CNRS, UMR 5130, Grenoble, France
Pierre-Marie Geffroy
Affiliation:
IRCER, university. de Limoges, CNRS, UMR 7315, 12 rue Atlantis, Limoges, France
Eric Akmansoy*
Affiliation:
Centre de Nanosciences et de Nanotechnologies, university. Paris-Saclay, UMR 9001, CNRS, 10 bd T. Gobert, Palaiseau, France
*
Corresponding author: Eric Akmansoy; Email: eric.akmansoy@universite-paris-saclay.fr

Abstract

In this study, we aimed to develop high permittivity $\text{TiO}_{2}$ ceramics ideal for the fabrication of all-dielectric metamaterials (ADM) operational in the terahertz frequency. $\text{TiO}_{2}$ ceramic pellets have been fabricated from a commercial powder. A comparative analysis was conducted between spark plasma sintering (SPS) and conventional sintering process. Characterizations were then carried out in the range of 0.2–1.4 THz using THz time-domain spectroscopy. We observed that the samples fabricated by the SPS and post-annealing treatment exhibit a high permittivity associated with minimal loss (${\varepsilon^{ \prime}} \simeq$ 100 and $\tan\delta \lt $ 0.015). These characteristics make these samples optimal candidates for achieving a negative or near-zero effective index in all-dielectric metamaterials. In addition, four micro-structuring processes were investigated to produce ADM operating in the terahertz range from the ceramics:

(i) micro-molding,

(ii) direct $\text{TiO}_{2}$ etching by inductively coupled plasma,

(iii) saw cutting and

(iv) femtosecond laser etching.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Luo, W, Yan, S and Zhou, J (2022) Ceramic-based dielectric metamaterials. Interdisciplinary Materials 1(1), 1127.10.1002/idm2.12012CrossRefGoogle Scholar
Dupas, C, Guillemet-Fritsch, S, Geffroy, PM, Chartier, T, Baillergeau, M, Mangeney, J, Roux, JF, Ganne, JP, Marcellin, S, Degiron, A and Akmansoy, É (2018) High permittivity processed $\text{SrTio}_{3}$ for metamaterials applications at terahertz frequencies. Scientific Reports 8(1), 15275.10.1038/s41598-018-33251-yCrossRefGoogle Scholar
Matsumoto, N, Nakagawa, T, Kageyama, K, Wada, N and Sakabe, Y (2006) Terahertz band-pass filter fabricated by multilayer ceramic technology. Japanese Journal of Applied Physics 45(9S), 7499.10.1143/JJAP.45.7499CrossRefGoogle Scholar
Saponjic, ZV, Dimitrijevic, NM, Tiede, DM, Goshe, AJ, Zuo, X, Chen, LX, Barnard, AS, Zapol, P, Curtiss, L and Rajh, T (2005) Shaping nanometer-scale architecture through surface chemistry. Advanced Materials 17(8), 965971.10.1002/adma.200401041CrossRefGoogle Scholar
Lemaire, PC and Parsons, GN (2017) Thermal selective vapor etching of TiO2: Chemical vapor etching via WF6 and self-limiting atomic layer etching using WF6 and BCl3. Chemistry of Materials 29(16), 66536665.10.1021/acs.chemmater.7b00985CrossRefGoogle Scholar
Choi, KR, Woo, JC, Joo, YH, Chun, YS and Kim, CI (2013) Dry etching properties of $\text{TiO}_{2}$ thin films in o2/cf4/ar plasma. Vacuum 92, 8589.10.1016/j.vacuum.2012.11.009CrossRefGoogle Scholar
Djemmah, DA, Gourdonnaud, D, Geffroy, P-M, Roux, J-F, Bouamrane, F and Akmansoy, E (2024) From bulk toward micro-structured $\text{TiO}_{2}$ ceramics for all-dielectric metamaterials at terahertz frequencies In 2024 18th European Conference on Antennas and Propagation (EuCAP), pp. 15. https://doi.org/10.23919/EuCAP60739.2024.10501288.CrossRefGoogle Scholar
Roux, JF, Garet, F and Coutaz, JL (2014) Principles and applications of THz time domain spectroscopy. In Physics and applications of terahertz radiation. Dordrecht: Springer Netherlands, pp. 203231.10.1007/978-94-007-3837-9_8CrossRefGoogle Scholar
Duvillaret, L, Garet, F and Coutaz, JL (1996) A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics 2(3), 739746.10.1109/2944.571775CrossRefGoogle Scholar
Yu, C, Zeng, Y, Yang, B, Donnan, R, Huang, J, Xiong, Z, Mahajan, A, Shi, B, Ye, H, Binions, R and Tarakina, NV (2017) Titanium dioxide engineered for near-dispersionless high terahertz permittivity and ultra-low-loss. Scientific Reports 7(1), 6639.10.1038/s41598-017-07019-9CrossRefGoogle ScholarPubMed
Matsumoto, N, Hosokura, T, Kageyama, K, Takagi, H, Sakabe, Y and Hangyo, M (2008) Analysis of dielectric response of $\text{TiO}_{2}$ in terahertz frequency region by general harmonic oscillator model. Japanese Journal of Applied Physics 47(9S), 7725.10.1143/JJAP.47.7725CrossRefGoogle Scholar
Djemmah, DA, Geffroy, P-M, Chartier, T, Roux, J-F, Bouamrane, F and Akmansoy, E (2022) Processing high permittivity $\text{TiO}_{2}$ for all-dielectric metamaterials applications at terahertz frequencies. In Proceedings of the Sixth International Symposium on Dielectric Materials and Applications (ISyDMA6). Cham: Springer International Publishing, pp. 177183.Google Scholar
Setvín, M, Wagner, M, Schmid, M, Parkinson, GS and Diebold, U (2017) Surface point defects on bulk oxides: Atomically-resolved scanning probe microscopy. Chemical Society Reviews 46(7), 17721784.10.1039/C7CS00076FCrossRefGoogle ScholarPubMed
Cohn, SB (2003) Microwave bandpass filters containing High-Q dielectric resonators. IEEE Transactions on Microwave Theory and Techniques 16(4), 218227. https://doi.org/10.1109/TMTT.1968.1126654.CrossRefGoogle Scholar
Depine, RA and Lakhtakia, A (2004) A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity. Microwave and Optical Technology Letters 41(4), 315316.10.1002/mop.20127CrossRefGoogle Scholar
Akmansoy, E and Marcellin, S (2018) Negative index and mode coupling in all-dielectric metamaterials at terahertz frequencies, EPJ Applied Metamaterials 5(10), 9. https://doi.org/10.1051/epjam/2018006.CrossRefGoogle Scholar
Lepetit, T, Akmansoy, E and Ganne, J-P (2011) Experimental evidence of resonant effective permittivity in a dielectric metamaterial. Journal of Applied Physics 109(2), 023115.10.1063/1.3537920CrossRefGoogle Scholar
Szabó, Z, Park, G-H, Hedge, R and Li, E-P (2010) A unique extraction of metamaterial parameters based on Kramers-Kronig relationship. IEEE Transactions on Microwave Theory and Techniques 58(10), 26462653. https://doi.org/10.1109/TMTT.2010.2065310.CrossRefGoogle Scholar
Bellanger, C, Brignon, A, Toulon, B, Primot, J, Bouamrane, F, Bouvet, T, Megtert, S, Quetel, L and Allain, T (2011) Design of a fiber-collimated array for beam combining. Optical Engineering 50(2), 025005. https://doi.org/10.1117/1.3537968.CrossRefGoogle Scholar
Joo, Y-H, Woo, J-C and Kim, CI (2012) Dry etching properties of $\text{TiO}_{2}$ thin film using inductively coupled plasma for resistive random access memory application. Transactions on Electrical and Electronic Materials 13(3), 144148. https://doi.org/10.4313/TEEM.2012.13.3.144.CrossRefGoogle Scholar
Park, M, Yoon, I and Yeonsang, EP (2022) Etching for vertical sidewall formation in $\text{TiO}_{2}$ nanorods. Applied Science and Convergence Technology 31(5), 113115.10.5757/ASCT.2022.31.5.113CrossRefGoogle Scholar
HiLASE Centre Institute of Physics of the Czech Academy of Sciences https://www.hilase.cz/en/.Google Scholar