Skip to main content

Analysis and design of a high-gain 100–180-GHz differential power amplifier in 130 nm SiGe BiCMOS

  • Faisal Ahmed (a1), Muhammad Furqan (a1), Klaus Aufinger (a2) and Andreas Stelzer (a1)

This paper presents the design and measurement results of a high-gain D-band broadband power amplifier (PA) implemented in a 130 nm SiGe BiCMOS technology. The topology of the PA is based on four differential cascode stages with interstage matching networks. A detailed analysis of the frequency behavior of the transimpedance-gain of the common-base stage of the cascode is presented by means of small-signal equivalent circuits, when the proposed four-reactance wideband matching network is used for output matching to the subsequent stage. The effect of the size of the active devices, in achieving a desired gain, bandwidth, and output power, is investigated. The fabricated D-band amplifier is characterized on-wafer demonstrating a peak differential gain and output power of about 25 dB and 11 dBm, respectively, while utilizing a DC power of 262 mW from a 2.7 V supply. The 3-dB small-signal bandwidth of the PA spans from 100 to 180 GHz (limited by the measurement setup), making it the first SiGe-based PA to cover the entire D-band frequency range. The PA achieves a state-of-the-art differential gain-bandwidth product of around 1.4 THz and the highest GBW/PDC ratio of 5.2 GHz/mW among all D-Band Si-based PAs.

Corresponding author
Corresponding author: F. Ahmed Email:
Hide All
[1] Deal, W.R. et al. Low Noise Amplification at 0.67 THz Using 30 nm InP HEMTs. IEEE Microw. Wireless Compon. Lett., 21 (2) (2011), 368370.
[2] Urteaga, M.; Pierson, R.; Rowell, P.; Jain, V.; Lobisser, E.; Rodwell, M.J.W.: 130 nm InP DHBTs with f T > 0.52 THz and f max > 1.1 THz, in 69th Annual Device Research Conf. DRC, 2011, 281282.
[3] Furqan, M.; Ahmed, F.; Feger, R.; Aufinger, K.; Stelzer, A.: A 122-GHz system-in-package radar sensor with BPSK modulator in a 130-nm SiGe BiCMOS Technology, IEEE Eur. Microwave Conf., London, UK, 2016.
[4] Rebeiz, G.M. et al. Millimeter-wave large-scale phased-arrays for 5 G systems, in Proc. IEEE Int. Microwave Symp., Phoenix, AZ, 2015.
[5] Böck, J. et al. SiGe HBT and BiCMOS process integration optimization within the DOTSEVEN project, in Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Boston, 2015.
[6] Schröter, M. et al. SiGE HBT technology: future trends and TCAD-based roadmap, in Proc. of the IEEE, 2016.
[7] Schröter, M.: The EU Dotseven project: Overview and results, in Bipolar/BiCMOS Circuits and Technol. Meeting (BCTM), New Brunswick, NJ, 2016.
[8] Heinemann, B. et al. SiGe HBT with fT/fmax of 505 GHz/720 GHz, in IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2016.
[9] Hajimiri, A.: Distributed integrated circuits: an alternative approach to high-frequency design. IEEE Commun. Mag., 40 (2) (2002), 168173.
[10] Heydari, P.: Distributed integrated circuits for broadband communications: a DL talk at SSCS-Orage county in May. IEEE Solid-State Circuits Mag., 6 (3) (2014), 7880.
[11] Sangwoo, Y.; Lee, I.; Urteaga, M.; Kim, M.; Sanggeun, J.: A fully-integrated 40–222 GHz InP HBT distributed amplifier. IEEE Microw. Wireless Compon. Lett., 24 (7) (2014), 460462.
[12] Pahl, P. et al. A 50 to 146 GHz power amplifier based on magneteic transformers and distributed gain cells. IEEE Microw. Wireless Compon. Lett., 25 (9) (2015), 615617.
[13] Eriksson, K.; Darwazeh, I.; Zirath, H.: InP DHBT distributed amplifiers with up to 235-GHz bandwidth. IEEE Trans. Microw. Theory Tech., 63 (4) (2015), 13341341.
[14] Fritsche, D.; Tretter, G.; Carta, C.; Ellinger, F.: A trimmable cascaded distributed amplifier with 1.6 THz gain-bandwidth product. IEEE Trans. THz. Sci. Technol., 5 (6) (2015), 10941096.
[15] Hsiao, Y.; Tsai, Z.; Liao, H.; Kao, J.; Wang, H.: Millimeter-wave CMOS power amplifiers with high output power and wideband performances. IEEE Trans. Microw. Theory Tech., 61 (12) (2013), 45204533.
[16] Furqan, M.; Ahmed, F.; Rücker, H.; Stelzer, A.: A 140–180-GHz broadband amplifier with 7 dBm OP1dB, in Proc. IEEE CSCIS, New Orleans, LA, USA, Oct 2015, 14.
[17] Ahmed, F.; Furqan, M.; Aufinger, K.; Stelzer, A.: A SiGe-based broadband 100–180-GHz differential power amplifier with 11 dBm peak output power and >1.3 THz GBW, in IEEE Eur. Microwave Integrated Circuits Conf., London, UK, 2016.
[18] Ahmed, F.; Furqan, M.; Aufinger, K.; Stelzer, A.: Compact broadband amplifiers with up to 105 GHz bandwidth in SiGe BiCMOS, in Proc. IEEE Radio Frequency Integrated Circuits Conf., Phoenix, AZ, USA, 2015, 36.
[19] Costa, D.; Liu, W.U.; Harris, J.S.: Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit. IEEE Trans. Electron Devices, 38 (9) (1991), 20182024.
[20] Voinigescu, S.P. et al. A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design. IEEE J. Solid State Circuits, 32 (9) (1997), 14301439.
[21] Liu, G.; Schuhmacher, H.: Broadband millimeter-wave LNAs (47–77 GHz and 70–140 GHz) using a T-type matching topology. IEEE J. Solid State Circuits, 48 (9) (2013), 20222029.
[22] Ahmed, F.; Furqan, M.; Stelzer, A.: A 200–325 GHz wideband, low-loss Marchand balun in SiGe BiCMOS technology, in IEEE Eur. Microwave Conf., 2015, 4043.
[23] Sarmah, N.; Heinemann, B.; Pfeiffer, U.: A 135–170 GHz power amplifier in an advanced SiGe HBT technology, in Proc. IEEE Radio Frequency Integrated Circuits Conf., Seattle, WA, USA, June 2013, 287290.
[24] Lin, H.; Rebeiz, G.M.: A 110–134-GHz SiGe amplifier with peak output power of 100–120 mW. IEEE Trans. Microw. Theory Tech., 62 (12) (2014), 29903000.
[25] Al-Eryani, J. et al. A 162 GHz power amplifier with 14 dBm output power, in Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), New Brunswick, NJ, 2016.
[26] Daneshgar, S.; Buckwalter, J.F.: A 22 dBm, 0.6 mm2 D-band SiGe HBT power amplifier using series power combining sub-quarter-wavelength baluns, in Proc. IEEE CSICS, New Orleans, LA, USA, Oct 2015, 14.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 310 *
Loading metrics...

* Views captured on Cambridge Core between 10th February 2017 - 24th March 2018. This data will be updated every 24 hours.