Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-21T03:45:40.428Z Has data issue: false hasContentIssue false

Bioinspired planar switched beam network using Butler matrix on a flexible substrate targeting multifaceted millimeter-wave applications

Published online by Cambridge University Press:  02 April 2024

Balaka Biswas*
Affiliation:
Department of Electronics and Communication Engineering, Chandigarh University, Mohali, India
Ayan Karmakar
Affiliation:
Department of MEMS Testing and Application Division, Semi-Conductor Laboratory (SCL), Chandigarh, India
*
Corresponding author: Balaka Biswas; Email: balaka.biswas@gmail.com

Abstract

This paper details the design and development of a planar switched beam network using 4 × 4 Butler matrix (BM) over a thin and flexible type biocompatible substrate. Four mils thick liquid crystal polymer (LCP) is used as a substrate here (ϵr = 2.92, tanδ = 0.002). The proposed design is centered at 28 GHz, targeting commercial millimeter-wave applications. Floral-shaped antenna with defective ground structures has been implemented as basic radiating elements. The whole structure is based on microstrip line configuration. The architecture occupies an area of 23.85 × 19.20 mm2 over the LCP substrate. Individual components of the BM are detailed here, followed by a system analysis of the whole integrated structure. The present work also covers the electrical equivalent circuit modeling of the whole beam-forming network. The fabricated prototype offers better than 18 dB return losses at each input port for the desired frequency band with 6 dBi (max.) peak gain and 500 MHz bandwidth around the center frequency. Port-to-port isolation of better than 15 dB is achieved with this topology. Experimental and simulated results are in good agreement in all aspects. A comparative study is also chalked out to highlight the significance of the current research work with respect to alike earlier reported structures.

Type
Research Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Robert, JM (2005) Phased Array Antenna Handbook. Boston: Artech House.Google Scholar
Lee, S, Lee, Y and Shin, H (2021) A 28-GHz switched-beam antenna with integrated Butler matrix and switch for 5G applications. Sensors 21, .Google ScholarPubMed
Cao, Y, Chin, KS, Che, W, Yang, W and Li, ES (2017) A compact 38 GHz multibeam antenna array with multifolded Butler matrix for 5G applications. IEEE Antennas and Wireless Propagation Letters 16, 29962999.CrossRefGoogle Scholar
Ashraf, N, Sebak, AR and Kishk, AA (2021) PMC packaged single-substrate 4 × 4 Butler matrix and double-ridge gap waveguide horn antenna array for multibeam applications. IEEE Transactions on Microwave Theory & Techniques 69(1), 248261.CrossRefGoogle Scholar
Kim, S, Yoon, S, Lee, Y and Shin, H (2019) A miniaturized Butler matrix based switched beamforming antenna system in a two-layer hybrid stackup substrate for 5G applications. Electronics 8, .CrossRefGoogle Scholar
Lian, JW, Ban, YL, Xiao, C and Yu, Z-F (2018) Compact substrate-integrated 4 × 8 Butler matrix with sidelobe suppression for millimeter-wave multibeam application. IEEE Antennas and Wireless Propagation Letters 17, 928932.CrossRefGoogle Scholar
Chen, CJ and Chu, TH (2010) Design of a 60-GHz substrate integrated waveguide Butler matrix—A systematic approach. IEEE Transactions on Microwave Theory & Techniques 58(7), 17241733.CrossRefGoogle Scholar
Djerafi, T and Wu, K (2012) A low-cost wideband 77-GHz planar Butler matrix in SIW technology. IEEE Transactions on Antennas and Propagation 60(10), 49494954.CrossRefGoogle Scholar
Kutty, S and Sen, D (2016) Beamforming for millimeter wave communications: An inclusive survey. IEEE Communications Surveys and Tutorials 18(2), 949973.CrossRefGoogle Scholar
Mosca, S, Bilotti, F, Toscano, A and Vegni, L (2002) A novel design method for Blass matrix beam-forming networks. IEEE Transactions on Antennas and Propagation 50(2), 225232.CrossRefGoogle Scholar
Huang, GC and Iskander, MF (2020) Comparative study of wideband Butler matrix and Rotman lens beamforming network for millimeterwave applications at Ka band. In IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 15871588.CrossRefGoogle Scholar
Paschaloudis, K, Lialios, D, Zekios, C, Kyriacou, G, Georgakopoulos, S and Ntetsikas, N (2020) Design of true time delay millimeter wave beamformers for 5G multibeam phased arrays. Electronics 9, 129.Google Scholar
Blass, J (1966) Multidirectional antenna—A new approach to stacked beams. In Proceedings of the 1958 IRE International Convention Record, 4850.Google Scholar
Nolen, J (1965) Synthesis of multiple beam networks for arbitrary illuminations. Radio Division, Bendix Corporation.Google Scholar
Fakoukakis, F, Kaifas, T, Vafiadis, E and Kyriacou, G (2015) Design and implementation of Butler matrix-based beam-forming networks for low sidelobe level electronically scanned arrays. International Journal of Microwave and Wireless Technologies 7(1), 6979.CrossRefGoogle Scholar
Chou, HT, Chang, CH and Chen, YS (2018) Multibeam microstrip patch antennas excited by parallel-plate beam-forming network with shaped reflecting boundary and optimized slot feeding transition structures. Radio Science 43(11), 14261437.CrossRefGoogle Scholar
Shelton, JP and Hsiao, JK (1979) Reflective Butler matrices. IEEE Transactions on Antennas and Propagation 30, 651659.CrossRefGoogle Scholar
Gatti, RV and Riccardo Rossi, R (2016) Single-ridge waveguide T-junctions for compact multilayer beam forming networks. International Journal of RF and Microwave Computer-Aided Engineering 27(1), 16.Google Scholar
Wincza, K and Sachse, K (2010) Broadband 4×4 Butler matrix in microstrip multilayer technology designed with the use of three-section directional couplers and phase-correction networks. In IEEE 18th International Conference on Microwave RADAR and Wireless Communications, 14.Google Scholar
Nusenu, S and Asare, E (2020) Butler matrix frequency diverse retrodirective array beamforming: An energy-efficient technique for mmWave networks. Wireless Communications and Mobile Computing 2020, 112.CrossRefGoogle Scholar
Zulkifli, FY, Chasanah, N and Rahardjo, ET (2015) Design of Butler matrix integrated with antenna array for beam forming. In International Symposium on Antennas and Propagation (ISAP), 14.Google Scholar
Ashraf, N, Kishk, AA and Sebak, AR (2018) AMC packaged - Butler matrix for millimeter wave beamforming. In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 417418.CrossRefGoogle Scholar
Yazdanbakhsh, P and Solbach, K (2011) Microstrip Butler matrix design and realization for 7 T MRI. Magnetic Resonance in Medicine 66, 270280.CrossRefGoogle ScholarPubMed
Klionovski, K, Sharawi, MS and Shamim, A (2019) A dual-polarization-switched beam patch antenna array for millimeter-wave applications. IEEE Transactions on Antennas and Propagation 67(5), 35103515.CrossRefGoogle Scholar
Khadaroo, A, Rahim, MKA, Khawaja, BA and Iqbal, MN (2020) Compact metamaterial based 4 × 4 Butler matrix with improved bandwidth for 5G applications. IEEE Access 8, 1357313583.Google Scholar
Vyas, R, Rida, A, Bhattacharya, S and Tentzeris, MM (2007) Liquid Crystal Polymer (LCP): The ultimate solution for low-cost RF flexible electronics and antennas. In IEEE Antennas and Propagation Society International Symposium, 17291732.Google Scholar
Palazzari, V, Thompson, D, Papageorgiou, N, Pinel, S, Lee, JH, Sarkar, S, Pratap, R, DeJean, G, Bairavasubramanian, R, Li, R-L, Tentzeris, M, Laskar, J, Papapolymerou, J and Roselli, L (2004) Multi-band RF and mm-wave design solutions for integrated RF functions in liquid crystal polymer system-on-package technology. In Proceedings of the 2004 IEEE-ECTC Symposium, 16581663.CrossRefGoogle Scholar
Maktoomi, MA, Makhtoomi, MH, Zafar, ZN, Helaoni, M and Ghannounchi, FM (2009) Simplified analysis of symmetrical RF cross overs extended with arbitrary complex passive two-port networks. PIER Letters 85, 18.CrossRefGoogle Scholar
Serres, A, Serres, G, Silva Junior, P, Freire, R, Cruz, J, Albuquerque, T, Oliveira, M and Silva, P (2017) Bio-inspired microstrip antenna. 10 IntechOpen.CrossRefGoogle Scholar
Behdad, N, Mudar, A, Joumayly, A and Meng, L (2011) Biologically inspired electrically small antenna arrays with enhanced directional sensitivity. IEEE Antennas and Wireless Propagation Letters 10, 361364.CrossRefGoogle Scholar
Ebnabbasi, K (2013) A bio-inspired printed-antenna transmission-range detection system. IEEE Antennas and Propagation Magazine 55(3), 193200.CrossRefGoogle Scholar
Ponnapalli, VS, Sowjanya, , Sudutha, R, Abhishek, N and Pranitha, KS (2021) Design of bio inspired maple leaf microstrip patch antenna array with different substrates for wireless applications. In International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), 809812.CrossRefGoogle Scholar
Raviteja, GV and Siva Rama Praveen, K (2021) Bio-inspired Korean striped maple leaf (Acer Tegmentosum) microstrip monopole design targeting UWB applications. In International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 17.Google Scholar
Biswas, B, Ghatak, R and Poddar, DR (2017) A fern fractal leaf inspired wideband antipodal Vivaldi antenna for microwave imaging system. IEEE Transactions on Antennas and Propagation 65(11), 61266129.CrossRefGoogle Scholar
Biswas, B, Karmakar, A and Adhikar, V (2021) Liquid crystal polymer: Potential bio compatible substrate for antenna application. Microwave Review 27(1), 1722.Google Scholar
Ponnapalli, VAS, Sowjanya, , Sudutha, R, Abhishek, N and Pranitha, KS (2021) Design of Bio Inspired Maple Leaf Microstrip Patch Antenna Array with Different Substrates for Wireless Applications. In 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), Bangalore, India, 809812.CrossRefGoogle Scholar
Biswas, B and Karmakar, A (2021) Electrical equivalent circuit modeling of various fractal inspired UWB antennas. Frequent Journal of RF-Engineering and Telecommunications 75(3-4), 109116.Google Scholar
Orfanidis, JS (2013) Electromagnetic waves and antennas. Rutgers University Press. https://www.ece.rutgers.edu/∼orfanidi/ewa (accessed 1 August 2016).Google Scholar
Balanis, CA (2016) Antenna Theory: Analysis and Design, 4th edn. Hoboken, NJ: John Wiley and Sons, Inc.Google Scholar
Wheeler, HA (1959) The radian sphere around a small antenna. Proceedings of the IRE 47, 13251331.CrossRefGoogle Scholar
Biswas, B and Karmakar, A (2022) Customary of CPW configuration’s in silicon RF technology targeting monolithic integration for GHz to THz frequency band. Materials Today: Proceedings 71, 220226.Google Scholar
Karmakar, A, Biswas, B and Gayen, S (2022) Measurement challenges for On-wafer characterization of RF devices and its remedial solutions targeting multifaceted wireless communication in modern era. In IEEE MTT-S & APP-S International Microwaves, Antennas and Propagation Conference (MAPCON-2022), 12th–15th.CrossRefGoogle Scholar
Lee, S, Lee, Y and Shin, H (2021) A 28-GHz switched-beam antenna with integrated butler matrix and switch for 5G applications. Sensors 21, .Google ScholarPubMed
Roy, B, Karmakar, A and Chakraborty, U (2022) Planar switched beam network using Butlar matrix on a single layer substrate for modern wireless communications. Radio Science 57, .CrossRefGoogle Scholar
Biswas, B and Karmakar, A (2023) Printed antennas for future generation wireless communication and healthcare, CRC Press Taylor & Francis Group an international publisher of progressive academic research. https://www.routledge.com/Printed-Antennas-for-Future-Generation-Wireless-Communication-and-Healthcare/Biswas-Karmakar/p/book/9781032393018 (accessed 16 May 2023).CrossRefGoogle Scholar
Tsao, YF, Hsu, HT and Desai, A (2023) High power handling GaAs SP4T Switch-based Beam-Switching planar antenna module for 5G New-Radio FR2 applications. AEU - International Journal of Electronics and Communications 159(154494), .CrossRefGoogle Scholar