Skip to main content

Broadband sub-THz spectroscopy modules integrated in 65-nm CMOS technology

  • Marion K. Matters-Kammerer (a1), Dave Van Goor (a2) and Lorenzo Tripodi (a3)

The design and characterization of a broadband 20–480 GHz continuously tuneable on-chip spectrometer based on non-linear transmission lines in 65-nm CMOS technology is presented. The design procedure of the sampler that detects the ultra-broadband signal from the transmitter in time and frequency domain is described in detail. It consists of a non-linear transmission line, a passive pulse differentiator and a high-speed sample and hold-circuit. The relevance of the layout of the Schottky diodes in the sampler with a maximum RC-cutoff frequency of 430 GHz is described. Time domain and frequency domain measurements are presented to characterize the 480 GHz sampler bandwidth as well as the 3.1 ps sampler rise time. A signal to noise ratio of 90 dB at 100 GHz, 70 dB at 200 GHz and more than 30 dB at 480 GHz is reached. Two implementation of the spectrometer with antennas are presented, one with an on-chip antenna and one in a hybrid package. The antenna-less on-chip implementation of the transmitter and sampler requires no external lenses and is miniaturized to an area of 3 mm2. Future applications include analysis of fluids in microfluidic packages or droplet analysis in bio-medical or pharmaceutical applications.

Corresponding author
Corresponding author: M. K. Matters-Kammerer Email:
Hide All
[1] Siegel, P.H.: Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech., 52 (10) (2004), 24382447.
[2] Berrier, A. et al. : Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators. Opt. Express, 20 (2012), 50525060.
[3] Siegel, P.H.; Tang, A.; Virbila, G.; Yanghyo, K.; Chang, M.C.F.; Pikov, V.: Compact non-invasive millimeter-wave glucose sensor, in 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong-Kong, China, 2015.
[4] Grzyb, J.; Statnikov, K.; Pfeiffer, U.: A lens-coupled all-silicon integrated 2 × 2 array of harmonic receivers for THz multi-color active imaging, in 9th Eur. Conf. on Antennas and Propagation (EuCAP), Lisbon, Portugal, 2015.
[5] Statnikov, K.; Grzyb, J.; Heinemann, B.; Pfeiffer, U.R.: 160 GHz to 1 THz multi-color active imaging with a lens-coupled SiGe HBT chip-set. IEEE Trans. Microw. Theory Tech., 99 (1) (2015), 113.
[6] Zhong, Q.; Choi, W.; Miller, C.; Henderson, R.; Kenneth, K.O.: A 210-to-305 GHz CMOS receiver for rotational spectroscopy, in IEEE Int. Solid-State Circuits Conf., San Francisco, 2016.
[7] Boppel, S. et al. : CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Trans. Microw. Theory Tech., 60 (12) (2012), 38343843.
[8] Berrier, A. et al. : Electronic THz-spectrometer for plasmonic enhanced deep subwavelength layer detection, in Eur. Microw. Conf., Paris, France, 2015.
[9] Tripodi, L. et al. : Broadband CMOS millimeter wave frequency multiplier with Vivaldi antenna in 3D chip-scale packaging. IEEE Trans. Microw. Theory Tech., 60 (12) (2012), 37613768.
[10] Marsland, R.A.; Valdivia, V.; Madden, C.J.; Rodwell, M.J.W.; Bloom, D.M.: 130 GHz GaAs monolithic integrated circuit sampling head. Appl. Phys. Lett., 55 (6) (1989), 592594.
[11] van de Weide, D.W.; Bostak, J.S.; Auld, B.A.; Bloom, D.M.: All-electronic generation of 880 fs, 3.5 V shockwaves and their application to a 3 THz free-space signal generation system. Appl. Phys. Lett., 62 (1993), 2224.
[12] Matters-Kammerer, M.K.; Goor, D.V.; Tripodi, L.: 20 GHz to 480 GHz on-chip broadband spectrometer in 65-nm CMOS technology, in Eur. Microw. Conf., London, United Kingdom, 2016.
[13] Matters-Kammerer, M.K.; Tripodi, L.; van Langevelde, R.; Cumana, J.; Jansen, R.H.: RF characterization of Schottky diodes in 65-nm CMOS. IEEE Trans. Electron Devices, 57 (5) (2010), 10631068.
[14] Jamshidifar, M.; Spickermann, G.; Schäfer, H.; Haring Bolivar, P.: 200-GHz bandwidth on wafer characterization of CMOS nonlinear transmission line using electro-optic sampling. Microw. Opt. Technol. Lett., 54 (8) (2012), 18581862.
[15] Hu, X.; Tripodi, L.; Matters-Kammerer, M.K.; Cheng, S.; Rydberg, A.: 65 nm CMOS monolithically integrated sub-THz transmitter. IEEE Trans. Electron Devices, 32 (9) (2011), 11821184.
[16] Breden, C.; Pohl, N.; Jaeschke, T.; Aufunger, K.; Bilgic, A.: A 240 GHz single-chip radar transceiver in a SiGe bipolar technology with on-chip antennas and ultra-wide tuning range, in IEEE Radio Freq. Integr. Circuits Symp., Seattle, WA, USA, 2013.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 10
Total number of PDF views: 59 *
Loading metrics...

Abstract views

Total abstract views: 189 *
Loading metrics...

* Views captured on Cambridge Core between 9th June 2017 - 24th March 2018. This data will be updated every 24 hours.