Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T21:18:16.876Z Has data issue: false hasContentIssue false

Correction of manufacturing deviations in waveguide filters and manifold multiplexers using metal insertions

Published online by Cambridge University Press:  28 May 2015

Santiago Cogollos*
Affiliation:
Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universidad Politécnica de Valencia, Valencia, Spain. Phone: +34 963879197
Carlos Carceller
Affiliation:
Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universidad Politécnica de Valencia, Valencia, Spain. Phone: +34 963879197
Mariam Taroncher
Affiliation:
Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universidad Politécnica de Valencia, Valencia, Spain. Phone: +34 963879197
Vicente E. Boria
Affiliation:
Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universidad Politécnica de Valencia, Valencia, Spain. Phone: +34 963879197
Marco Guglielmi
Affiliation:
European Space Research and Technology Centre, European Space Agency, Noordwijk, The Netherlands
Carlos Vicente
Affiliation:
Aurorasat Software and Testing, Valencia, Spain
María Brumos
Affiliation:
Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universidad Politécnica de Valencia, Valencia, Spain. Phone: +34 963879197
*
Corresponding author: S. Cogollos Email: sancobo@dcom.upv.es

Abstract

Microwave filters and multiplexers commonly employ tuning screws to compensate for small errors occurring during the fabrication process. Nevertheless, the use of tuning screws has some disadvantages, because the small gaps between the screws and the holes are prone to create unwanted effects when dealing with high-power signals, especially for space applications, and are also the source of potential radiation losses. In this paper, an alternative technique to correct manufacturing deviations is presented, in which tuning screws are replaced by fixed metal insertions. In this case, the correction is made by means of designing new insertion pieces that will be able to correct those small deviations. In order to find the dimensions of the new pieces, a space-mapping technique is applied. For verification purposes, the method has been applied over a circular-waveguide dual-mode filter and later over a manifold multiplexer containing the same type of filters. However, the technique can be directly extended to other types of waveguide filters and multiplexers where tuning screws are also employed.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wu, K.L.: An optimal circular-waveguide dual-mode filter without tuning screws. IEEE Trans. Microw. Theory Tech., 47 (1999), 271276.Google Scholar
[2] Guglielmi, M.; Molina, R.C.; Alvarez, A.: Dual-mode circular waveguide filters without tuning screws. IEEE Microw. Guid. Wave Lett., 2 (1992), 457458.Google Scholar
[3] Accatino, L.; Bertin, G.; Mongiardo, M.: A four-pole dual mode elliptic filter realized in circular cavity without screws. IEEE Trans. Microw. Theory Tech., 44 (1996), 26802687.Google Scholar
[4] Bandler, J.W.; Biernacki, R.; Chen, S.H.; Grobelny, P.A.; Hemmers, R.H.: Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech., 42 (1994), 25362544.CrossRefGoogle Scholar
[5] Bandler, J.W.; Biernacki, R.; Chen, S.H.; Hemmers, R.H.; Madsen, K.: Electromagnetic optimization exploiting aggressive space mapping. IEEE Trans. Microw. Theory Tech., 43 (1995), 28742882.Google Scholar
[6] Bandler, J.W. et al. : Space mapping: the state of the art. IEEE Trans. Microw. Theory Tech., 52 (2004), 337361.CrossRefGoogle Scholar
[7] Steer, M.B.; Bandler, J.W.; Snowden, C.M.: Computer-aided design of RF and microwave circuits and systems. IEEE Trans. Microw. Theory Tech., 50 (2002), 9961005.CrossRefGoogle Scholar
[8] Wu, K.L.; Zhao, Y.J.; Wang, J.; Cheng, M.K.K.: An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping. IEEE Trans. Microw. Theory Tech., 50 (2004), 393402.CrossRefGoogle Scholar
[9] Amari, S.; Ledrew, C.; Menzel, W.: Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microw. Theory Tech., 54 (2006), 21532159.Google Scholar
[10] Brumos, M.; Boria, V.E.; Guglielmi, M.; Cogollos, S.: Correction of manufacturing deviations in circular-waveguide dual-mode filters using aggressive space mapping, in European Microwave Conf., Rome, 2014, 624627.CrossRefGoogle Scholar
[11] Williams, A.E.: A four-cavity elliptic waveguide filter. IEEE Trans. Microw. Theory Tech., 18 (1970), 11091114.Google Scholar
[12] Williams, A.E.; Atia, A.E.: New types of waveguide bandpass filters for satellite transponders. Comsat Tech. Rev., 1 (1971), 2143.Google Scholar
[13] Atia, A.E.; Williams, A.E.: Narrow-bandpass waveguide filters. IEEE Trans. Microw. Theory Tech., 20 (1972), 258265.CrossRefGoogle Scholar
[14] Kudsia, C.; Cameron, R.; Tang, W.C.: Innovations in microwave filters and multiplexing networks for communications satellite systems. IEEE Trans. Microw. Theory Tech., 40 (1992), 11331149.Google Scholar
[15] Cogollos, S. et al. : A systematic design procedure of classical dual-mode circular waveguide filters using an equivalent distributed model. IEEE Trans. Microw. Theory Tech., 60 (2012), 10061017.Google Scholar
[16] Cogollos, S.; Boria, V.E.; Soto, P.; Gimeno, B.; Guglielmi, M.: Efficient CAD tool for inductively coupled rectangular waveguide filters with rounded corners, in 31st European Microwave Conf., 24–26 September 2001, 1–4Google Scholar
[17] FEST3D 6.8.4 Aurora Software and Testing, S.L. (on behalf of ESA/ESTEC), Valencia, Spain, 2013. Available: http://www.fest3d.com.Google Scholar