Skip to main content

Effects of bi-isotropic coatings and bi-isotropic background media upon gain characteristics of an axially slotted cylinder

  • Z. A. Awan (a1)

An analysis about the effects of various bi-isotropic (BI) coatings and BI background media upon the gain characteristics of an axially slotted cylinder using numerical simulations is presented. It is investigated that chirality and Tellegen parameters of a coating and a background medium play a significant role in modifying the gain properties. It is further studied that an axially slotted cylinder when coated with a strong BI material and embedded in a free space background significantly enhances the gain in the forward direction. On the other hand, a strong Tellegen coating guides most of the radiated field from an axial slot toward rear side of the cylinder.

Corresponding author
Corresponding author: Z. A. Awan Email:
Hide All
[1] Lindell, I.V.; Sihvola, A.H.; Tretyakov, S.A.; Viitanen, A.J.: Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, Norwood, MA, 1994.
[2] Ougier, S.; Chenerie, I.; Sihvola, A.; Priou, A.: Propagation in bi-isotropic media: effect of different formalisms on the propagation analysis. Progr. Electromagn. Res., 9 (1994), 1930.
[3] Lindell, I.V.; Sihvola, A.; Viitanen, A.J.: Plane wave reflection from a bi-isotropic (nonreciprocal chiral) interface. Microw. Opt. Technol. Lett., 5 (2) (1992), 7981.
[4] He, S.; Hu, Y.: Electromagnetic scattering from a stratified bi-isotropic (nonreciprocal chiral) Slab: numerical computations. IEEE Trans. Antennas Propag., 41 (8) (1993), 10571062.
[5] Monzon, C.; Forester, D.W.: Negative refraction and focusing of circularly polarized waves in optically active media. Phys. Rev. Lett., 95 (2005), 123904-1123904-4.
[6] Bohren, C.F.: Light scattering by an optically active sphere. Chem. Phys. Lett., 29 (1974), 458462.
[7] Belichenko, V.P.; Fisanov, V.V.: Scattering of electromagnetic waves by a bi-isotropic sphere. Russ. Phys. J., 37 (10) (1994), 162166.
[8] Monzon, J.C.: Scattering by a biisotropic body. IEEE Trans. Antennas Propag., 43 (11) (1995), 12881296.
[9] He, S.; Cao, J.: Scattering from a bi-isotropic object of arbitrary shape. J. Electromagn. Waves Appl., 12 (1998), 15471574.
[10] Bohren, C.F.: Scattering of electromagnetic waves by an optically active spherical shell. J. Chem. Phys., 62 (4) (1975), 15661571.
[11] Cheng, D.; Lin, W.; Zhao, Y.: Anisotropic impedance boundary condition for a cylindrical conductor coated with a bi-isotropic medium. J. Phys. D: Appl. Phys., 26 (1993), 517521.
[12] Wang, D.X.; Lau, P.Y.; Yung, E.K.; Chen, R.S.: Scattering by conducting bodies coated with bi-isotropic matrials. IEEE Trans. Antennas Propag., 55 (8) (2007), 23132318.
[13] Hsu, C.G.; Chiu, C.N.: Oblique plane wave scattering from a general bi-isotropic cylindrical shell with an interior advanced composite-material backing. IEEE Trans. Electromagn. Compat., 48 (4) (2006), 614620.
[14] Monzon, J.C.: Radiation and scattering in homogeneous general biisotropic regions. IEEE Trans. Antennas Propag., 38 (2) (1990), 227235.
[15] Koivisto, P.K.; Tretyakov, S.A.; Oksanen, M.I.: Waveguide filled with general biisotropic media. Radio Sci., 8 (5) (1993), 675686.
[16] Paiva, C.R.; Topa, A.L.; Barbosa, A.M.: Novel propagtion features of dielectric planar chirowaveguides due to nonreciprocity. Microw. Opt. Technol. Lett., 6 (3) (1993), 182185.
[17] Meshcheryakov, V.A.; Mudrov, A.E.: Characteristic electromagnetic waves in a circular waveguide filled with a biisotropic medium. Russ. Phys. J., 40 (2) (1997), 162166.
[18] Ioannidis, A.D.; Kristensson, G.; Sjöberg, D.: On the dispersion equation for a homogeneous, bi-isotropic waveguide of arbitrary cross-section. Microw. Opt. Technol. Lett., 51 (11) (2009), 27012705.
[19] Ioannidis, A.D.; Kristensson, G.; Sjöberg, D.: The propagation problem in a bi-isotropic waveguide. Progr. Electromagn. Res. B, 19 (2010), 2140.
[20] Tellegen, B.D.F.: The gyrator, a new electric network element. Phillips Res. Rep., 3 (2) (1948), 81101.
[21] Lakhtakia, A.: The Tellegen medium is “a Boojum, you see”. Int. J. Infrared Millim. Waves, 15 (10) (1994), 16251630.
[22] Lakhtakia, A.: On the genesis of post constrain in modern electromgnetism. Int. J. Light Electron. Opt., 115 (4) (2004), 151158.
[23] Sihvola, A.H.; Tretyakov, S.A.; Serdyukov, A.N.; Semchenko, I.V.: Duality once more applied to Tellegen media. Electromagnetics, 17 (2) (1997), 205211.
[24] Lakhtakia, A.; Weiglhofer, W.S.: On the application of duality to Tellegen media. Electromagnetics, 17 (2) (1997), 199204.
[25] Tretyakov, S.A.; Maslovski, S.I.; Nefedov, I.S.; Viitanen, A.J.; Belov, P.A.; Sanmartin, A.: Artificial Tellegen particle. Electromagnetics, 23 (8) (2003), 665680.
[26] Altan, B.S.: A uniqueness theorem for initial boundary value problems in Tellegen medium. Progr. Electromagn. Res. C, 1 (2008), 7385.
[27] Kamenetskii, E.O.; Sigalov, M.; Shavit, R.: Tellegen particles and magnetoelectric metamaterials. J. Appl. Phys., 105 (2009), 013537-1013537-15.
[28] Prudêncio, F.R.; Matos, S.A.; Paiva, C.R.: The most general classes of Tellegen media reducible to simple reciprocal media: a geometrical approach, in General Assembly and Scientific Symp. (URSI, GASS), XXXIth URSI, Beijing, 16–23 August 2014, 14.
[29] Astrov, D.N.: Magnetoelectric effect in chromium oxide. Sov. Phys. – JETP, 13 (4) (1961), 729733.
[30] Coh, S.; Vanderbilt, D.: Canonical magnetic insulators with isotropic magnetoelectric coupling. Phys. Rev. B, 88 (2013), 121106-1121106-5.
[31] Mong, R.S.K.; Essin, A.M.; Moore, J.E.: Aniferromagnetic topological insulators. Phys. Rev. B, 81 (2010), 245209-1245209-10.
[32] Prudêncio, F.R.; Matos, S.A.; Paiva, C.R.: Asymmetric band diagrams in photonic crystals with a spontaneous nonreciprocal response. Phys. Rev. A, 91 (2015), 063821-1063821-13.
[33] Prudêncio, F.R.; Matos, S.A.; Paiva, C.R.: Exact image method for radiation problems in stratified isorefractive Tellegen media. IEEE Transa. Antennas and Propag., 62 (9) (2014), 46374646.
[34] Prudêncio, F.R.; Silveirinha, M.G.: Optical isolation of circularly polarized light with a spontaneous magnetoelectric effect. Phys. Rev. A, 93 (2016), 043846-1043846-11.
[35] Hurd, R.A.: Radiation patterns of a dielectric coated axially slotted cylinder. Can. J. Phys., 34 (1956), 638642.
[36] Wait, J.R.; Mienteka, W.: Slotted-cylinder antenna with a dielectric coating. J. Res. Natl. Bur. Stand., 58 (6) (1957), 287296.
[37] Shafai, L.: Radiation from an axial slot antenna coated with a homogenous material. Can. J. Phys., 50 (23) (1972), 30723077.
[38] Knop, C.M.: External admittance of an axial slot on a dielectric coated metal cylinder. Radio Sci., 3 (1968), 803818.
[39] Mushref, M.A.: Radiation from a dielectric–coated cylinder with two slots. Appl. Math. Lett., 17 (2004), 721726.
[40] Mushref, M.A.: Electromagnetic radiation from a coated cylinder with two arbitrary axial slots. High Freq. Electron., 9 (2) (2010), 4754.
[41] Rusch, W.V.T.: Radiation from a plasma-clad axially-slotted cylinder. J. Res. Natl. Bureau Stand., 67D (2) (1963), 203214.
[42] Chen, H.C.; Cheng, D.K.: Radiation from an axially slotted anisotropic plasma clad cylinder. IEEE Trans. Antennas Propag., 13 (3) (1965), 395401.
[43] Marchin, P.D.; Tyras, G.: Radiation from an infinite axial slot on a circular cylinder clad with magnetoplasma. Radio Sci., J. Res., 69D (4) (1965), 529538.
[44] Yeh, C.; Kaprielian, Z.A.: Radiation from an axially slotted cylinder coated with an inhomogeneous dielectric sheath. Br. J. Appl. Phys., 14 (1963), 677681.
[45] Tyras, G.: Field of an axially slotted circular cylinder clad with an inhomogeneous dielectric. IEEE Trans. Antennas Propag., AP–15 (2) (1967), 222226.
[46] Hamid, A.K.: Axially slotted antenna on a circular or elliptic cylinder coated with metamaterials. Progr. Electromagn. Res., 51 (2005), 329341.
[47] Richmond, J.: Axial slot antenna on a dielectric-coated elliptic cylinder. IEEE Trans. Antennas Propag., 37 (10) (1989), 12351241.
[48] Hamid, A.K.: Elliptic cylinder with slotted antenna coated with magnetic metamaterials. Int. J. Antennas Propag., 2011 (2011), 842863-1842863-5.
[49] Awan, Z.A.: Directive gain from an axially slotted dielectric clad cylinder embedded in a metamaterial. J. Mod. Opt., 62 (7) (2015), 560568.
[50] Awan, Z.A.: Gain properties of an axially slotted cylinder with two coating layers. Int. J. Microw. Wireless Technol., (2015) DOI:10.1017/S1759078715001038, 8–pp.
[51] Mahmoud, S.F.: Characteristics of a chiral coated slotted cylindrical antenna. IEEE Trans. Antennas Propag., 44 (1996), 814821.
[52] Awan, Z.A.: Gain of an axially slotted cylinder covered with a chiral coating and embedded in a chiral medium. Appl. Opt., 54 (19) (2015), 58895896.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 193 *
Loading metrics...

* Views captured on Cambridge Core between 11th November 2016 - 19th March 2018. This data will be updated every 24 hours.