Skip to main content

Efficient 2-D leaky-wave antenna configurations based on graphene metasurfaces

  • Walter Fuscaldo (a1) (a2), Paolo Burghignoli (a1), Paolo Baccarelli (a1) and Alessandro Galli (a1)

Different configurations of leaky-wave antennas (LWAs) based on graphene metasurfaces are studied. The electronic properties of a graphene metasurface in the low THz range are investigated in details in order to discuss the reconfigurability features of the presented structures. Simple exact formulas for evaluating the ohmic losses related to the surface plasmon polariton (SPP) propagation along a suspended graphene sheet, and the relevant figures of merit of SPP propagating over a generic metasurface are given. Such formulas allow us to explain the low efficiency of reconfigurable antennas based on SPPs along graphene metasurfaces. Then, the radiative performance and relevant losses of graphene Fabry–Perot cavity antennas (FPCAs) based on non-plasmonic leaky waves (LWs) are investigated and compared with previous solutions based on SPPs. In particular, a single-layer structure, i.e. a grounded dielectric slab covered with a graphene metasurface, and a multilayered structure, i.e. a substrate–superstrate antenna in which the graphene metasurface is embedded at a suitable position within the substrate, are considered in detail. The results show that the proposed LW solutions in graphene FPCAs allow for considerably reducing the ohmic losses, thus significantly improving the efficiency of the proposed radiators.

Corresponding author
Corresponding author: W. Fuscaldo Email:
Hide All
[1] Pendry, J.B.; Schurig, D.; Smith, D.R.: Controlling electromagnetic fields. Science, 312 (2006), 17801782.
[2] Engheta, N.; Ziolkowski, R.W. (eds.): Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, Hoboken, NJ, USA, 2006.
[3] Alù, A.; Engheta, N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E, 72 (2005), 016623.
[4] Maci, S.; Minatti, G.; Casaletti, M.; Bosiljevac, M.: Metasurfing: addressing waves on impenetrable metasurfaces. Antennas Wireless Propag. Lett., 10 (2012), 14991502.
[5] Blanco, D.; Rajo-Iglesias, E.; Maci, S.; Llombart, N.: Directivity enhancement and spurious radiation suppression in leaky-wave antennas using inductive grid metasurfaces. IEEE Trans. Antennas Propag., 63 (3) (2015), 891900.
[6] Di Ruscio, D.; Baccarelli, P.; Burghignoli, P.; Galli, A.: Omnidirectional radiation in the presence of homogenized metasurfaces. Progr. Electromagn. Res., 150 (2015), 145161.
[7] Chen, H.T.; Padilla, W.J.; Zide, J.M.O.; Gossard, A.C.; Taylor, A.J.; Averit, R.D.: Active terahertz metamaterial devices. Nat. Lett., 444 (2006), 597600.
[8] Jansen, C.; Al-Naib, A.I.; Born, N.; Koch, M.: Terahertz metasurfaces with high Q-factors. Appl. Phys. Lett., 98 (2011), 051109.
[9] Siegel, P.: Terahertz technology. IEEE Trans. Microw. Theory Tech., 50 (3) (2002), 910927.
[10] Geim, A.K.; Novoselov, K.S.: The rise of graphene. Nat. Mater., 6 (2007), 183191.
[11] Raza, H. (ed.): Graphene Nanoelectronics. Springer, Berlin, 2012.
[12] Vakil, A.; Engheta, N.: Transformation optics using graphene. Science, 332 (2011), 12911294.
[13] Hanson, G.W.: Dyadic Green’ s functions and guided surface waves for a surface conducitivity model of graphene. Appl. Phys. Lett., 103 (6) (2008), 064302.
[14] Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A.: Complex mode spectra of graphene-based planar structures for THz applications. J. Infrared Milli. Terahz. Waves, 36 (8) (2015), 720733.
[15] Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A.: A reconfigurable substrate-superstrate graphene-based leaky-wave THz antenna. Antenna Wireless Propag. Lett., 15 (2016), 15451548.
[16] He, X.: Tunable terahertz graphene materials. Carbon, 82 (2015), 229237.
[17] Maier, S.A.: Plasmonics: Fundamentals and Applications, Springer, New York, NY, USA, 2007.
[18] Tamagnone, M.; Gómez-Díaz, J.S.; Mosig, J.R.; Perruisseau-Carrier, J.: Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl. Phys. Lett., 101 (2012), 2141202.
[19] Esquius-Morote, M.; Gómez-Díaz, J.S.; Perruisseau-Carrier, J.: Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans. THz Sci. Technol., 4 (1) (2014), 116122.
[20] Wang, X.C.; Zhao, W.S.; Hu, J.; Yin, W.Y.: Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface. IEEE Trans. Nanotechnol., 4 (1) (2015), 6269.
[21] Shapoval, O.V.; Gómez-Díaz, J.S.; Perruisseau-Carrier, J.; Mosig, J.R.; Nosich, A.I.: Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range. IEEE Trans. THz Sci. Technol., 3 (5) (2013), 666674.
[22] Llatser, I. et al. : Radiation characteristics of tunable graphennas in the terahertz band. Radioengineering, 21 (4) (2012), 946953.
[23] Berini, P.: Figures of merit for surface plasmon waveguides. Opt. Exp., 14 (26) (2006), 13030.
[24] Galli, A.; Baccarelli, P.; Burghignoli, P.: Leaky-Wave Antennas, Wiley Encyclopedia of Electrical and Electronics Engineering, no. 1222, pp. 1–20. Wiley Online Library, New York, NY, USA, 2016.
[25] Jackson, D.R.; Oliner, A.A.: A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Trans. Antennas Propag., 36 (7) (1988), 905910.
[26] Sorrentino, R.: Transverse resonance technique, in Itoh, T. (ed.), Numerical Techniques for Microwave and Millimeter-wave Passive Structures, Wiley, New York, NY, USA, 1989.
[27] Valerio, G.; Jackson, D.R.; Galli, A.: Formulas for the number of surface waves on layered structures. IEEE Trans. Microw. Theory Technol., 58 (7) (2010), 17861795.
[28] Lovat, G.; Burghignoli, P.; Celozzi, S.: A tunable ferro-electric antenna for fixed-frequency scanning applications. IEEE Antennas Wireless Propag. Lett., 5 (2006), 353356.
[29]CST products, Germany, 2014 [Online]. Available:
[30] Lovat, G.; Burghignoli, P.; Jackson, D.R.: Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas. IEEE Trans. Antennas Propag., 54 (5) (2006), 14421452.
[31] Baccarelli, P.; Di Nallo, C.; Frezza, F.; Galli, A.; Lampariello, P.: Attractive features of leaky-wave antennas based on ferrite-loaded open waveguides, in Proc. Antennas and Propagation Soc. Int. Symp., Montreal, QC, Canada, July 13–18, 1997, 14421445.
[32] Di Nallo, C.; Frezza, F.; Galli, A.; Lampariello, P.: Rigorous evaluation of ohmic loss effects for accurate design of traveling-wave antennas. J. Electromagn. Waves Appl., 12 (1) (1988), 3958.
[33] Pozar, D.M.: Microwave Engineering, John Wiley & Sons, Hoboken, NJ, USA, 2009.
[34] Luukkonen, O. et al. : Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans. Antennas Propag., 56 (6) (2008), 16241632.
[35] Yakovlev, A.B.; Padooru, Y.R.; Hanson, G.W.; Mafi, A.; Karbasi, S.: A generalized additional boundary condition for mushroom-type and bed-of-nails-type wire media. IEEE Trans. Microw. Theory Tech., 59 (3) (2011), 527532.
[36] Tretyakov, S.A.: Analytical Modeling in Applied Electromagnetics, Artech House, Norwood, MA, USA, 2003.
[37] Yakovlev, A.B. et al. : Analytical modeling of surface waves on high impedance surfaces, in Zouhdi, S.; Sihvola, A.; Vinogradov, A.P. (eds.), Metamaterials and Plasmonics: Fundamentals, Modeling, Applications, Springer, Berlin, Germany, 2009, 239254.
[38] Mas'ud, F.A.; Cho, H.; Lee, T.; Rho, H.; Seo, T.H.; Kim, M.J.: Domain size engineering of CVD graphene and its influence on physical properties. J. Phys. D: Appl. Phys., 49 (2016), 205504.
[39] Deokar, G. et al. : Towards high quality CVD graphene growth and transfer. Carbon, 89 (2015), 8292.
[40] Li, X. et al. : Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324 (5932) (2009), 13121314.
[41] Li, X. et al. : Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett., 9 (12) (2009), 43594363.
[42] Wan, H.; Cai, W.; Wang, W.; Jiang, S.; Xu, S.; Liu, J.: High-quality monolayer graphene for bulk laser mode-locking near 2 μm. Opt. Quantum Electron., 48 (1) (2016), 18.
[43] Wan, X.; Zhou, N.; Gan, L.; Li, H.; Ma, Y.; Zhai, T.: Towards wafer-size strictly monolayer graphene on copper via cyclic atmospheric chemical vapor deposition. Carbon, 110 (2016), 384389.
[44] Ng, A.M.H.; Wang, Y.; Lee, W.C.; Teck, L.C.; Loh, K.P.; Low, H.Y.: Patterning of graphene with tunable size and shape for microelectrode array devices. Carbon, 67 (2013), 390397.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 5
Total number of PDF views: 96 *
Loading metrics...

Abstract views

Total abstract views: 563 *
Loading metrics...

* Views captured on Cambridge Core between 9th May 2017 - 19th March 2018. This data will be updated every 24 hours.