Skip to main content
×
Home
    • Aa
    • Aa

Efficient 2-D leaky-wave antenna configurations based on graphene metasurfaces

  • Walter Fuscaldo (a1) (a2), Paolo Burghignoli (a1), Paolo Baccarelli (a1) and Alessandro Galli (a1)
Abstract

Different configurations of leaky-wave antennas (LWAs) based on graphene metasurfaces are studied. The electronic properties of a graphene metasurface in the low THz range are investigated in details in order to discuss the reconfigurability features of the presented structures. Simple exact formulas for evaluating the ohmic losses related to the surface plasmon polariton (SPP) propagation along a suspended graphene sheet, and the relevant figures of merit of SPP propagating over a generic metasurface are given. Such formulas allow us to explain the low efficiency of reconfigurable antennas based on SPPs along graphene metasurfaces. Then, the radiative performance and relevant losses of graphene Fabry–Perot cavity antennas (FPCAs) based on non-plasmonic leaky waves (LWs) are investigated and compared with previous solutions based on SPPs. In particular, a single-layer structure, i.e. a grounded dielectric slab covered with a graphene metasurface, and a multilayered structure, i.e. a substrate–superstrate antenna in which the graphene metasurface is embedded at a suitable position within the substrate, are considered in detail. The results show that the proposed LW solutions in graphene FPCAs allow for considerably reducing the ohmic losses, thus significantly improving the efficiency of the proposed radiators.

Copyright
Corresponding author
Corresponding author: W. Fuscaldo Email: walter.fuscaldo@uniroma1.it
References
Hide All
[2] N. Engheta ; R.W. Ziolkowski (eds.): Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, Hoboken, NJ, USA, 2006.

[3] A. Alù ; N. Engheta : Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E, 72 (2005), 016623.

[5] D. Blanco ; E. Rajo-Iglesias ; S. Maci ; N. Llombart : Directivity enhancement and spurious radiation suppression in leaky-wave antennas using inductive grid metasurfaces. IEEE Trans. Antennas Propag., 63 (3) (2015), 891900.

[6] D. Di Ruscio ; P. Baccarelli ; P. Burghignoli ; A. Galli : Omnidirectional radiation in the presence of homogenized metasurfaces. Progr. Electromagn. Res., 150 (2015), 145161.

[7] H.T. Chen ; W.J. Padilla ; J.M.O. Zide ; A.C. Gossard ; A.J. Taylor ; R.D. Averit : Active terahertz metamaterial devices. Nat. Lett., 444 (2006), 597600.

[8] C. Jansen ; A.I. Al-Naib ; N. Born ; M. Koch : Terahertz metasurfaces with high Q-factors. Appl. Phys. Lett., 98 (2011), 051109.

[9] P. Siegel : Terahertz technology. IEEE Trans. Microw. Theory Tech., 50 (3) (2002), 910927.

[10] A.K. Geim ; K.S. Novoselov : The rise of graphene. Nat. Mater., 6 (2007), 183191.

[12] A. Vakil ; N. Engheta : Transformation optics using graphene. Science, 332 (2011), 12911294.

[14] W. Fuscaldo ; P. Burghignoli ; P. Baccarelli ; A. Galli : Complex mode spectra of graphene-based planar structures for THz applications. J. Infrared Milli. Terahz. Waves, 36 (8) (2015), 720733.

[15] W. Fuscaldo ; P. Burghignoli ; P. Baccarelli ; A. Galli : A reconfigurable substrate-superstrate graphene-based leaky-wave THz antenna. Antenna Wireless Propag. Lett., 15 (2016), 15451548.

[19] M. Esquius-Morote ; J.S. Gómez-Díaz ; J. Perruisseau-Carrier : Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Trans. THz Sci. Technol., 4 (1) (2014), 116122.

[23] P. Berini : Figures of merit for surface plasmon waveguides. Opt. Exp., 14 (26) (2006), 13030.

[25] D.R. Jackson ; A.A. Oliner : A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Trans. Antennas Propag., 36 (7) (1988), 905910.

[27] G. Valerio ; D.R. Jackson ; A. Galli : Formulas for the number of surface waves on layered structures. IEEE Trans. Microw. Theory Technol., 58 (7) (2010), 17861795.

[28] G. Lovat ; P. Burghignoli ; S. Celozzi : A tunable ferro-electric antenna for fixed-frequency scanning applications. IEEE Antennas Wireless Propag. Lett., 5 (2006), 353356.

[30] G. Lovat ; P. Burghignoli ; D.R. Jackson : Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas. IEEE Trans. Antennas Propag., 54 (5) (2006), 14421452.

[34] O. Luukkonen : Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans. Antennas Propag., 56 (6) (2008), 16241632.

[35] A.B. Yakovlev ; Y.R. Padooru ; G.W. Hanson ; A. Mafi ; S. Karbasi : A generalized additional boundary condition for mushroom-type and bed-of-nails-type wire media. IEEE Trans. Microw. Theory Tech., 59 (3) (2011), 527532.

[39] G. Deokar : Towards high quality CVD graphene growth and transfer. Carbon, 89 (2015), 8292.

[41] X. Li : Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett., 9 (12) (2009), 43594363.

[42] H. Wan ; W. Cai ; W. Wang ; S. Jiang ; S. Xu ; J. Liu : High-quality monolayer graphene for bulk laser mode-locking near 2 μm. Opt. Quantum Electron., 48 (1) (2016), 18.

[44] A.M.H. Ng ; Y. Wang ; W.C. Lee ; L.C. Teck ; K.P. Loh ; H.Y. Low : Patterning of graphene with tunable size and shape for microelectrode array devices. Carbon, 67 (2013), 390397.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 28 *
Loading metrics...

Abstract views

Total abstract views: 201 *
Loading metrics...

* Views captured on Cambridge Core between 9th May 2017 - 17th October 2017. This data will be updated every 24 hours.