Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T14:04:05.823Z Has data issue: false hasContentIssue false

Fully integrated 60 GHz transceiver in SiGe BiCMOS, RF modules, and 3.6 Gbit/s OFDM data transmission

Published online by Cambridge University Press:  25 March 2011

Srdjan Glisic*
Affiliation:
IHP Leibniz Institute for Innovative Microelectronics GmbH, Im Technologiepark 25, 15236 Frankfurt Oder, Germany. Phone:  +49 335 5625 146
J. Christoph Scheytt
Affiliation:
IHP Leibniz Institute for Innovative Microelectronics GmbH, Im Technologiepark 25, 15236 Frankfurt Oder, Germany. Phone:  +49 335 5625 146
Yaoming Sun
Affiliation:
IHP Leibniz Institute for Innovative Microelectronics GmbH, Im Technologiepark 25, 15236 Frankfurt Oder, Germany. Phone:  +49 335 5625 146
Frank Herzel
Affiliation:
IHP Leibniz Institute for Innovative Microelectronics GmbH, Im Technologiepark 25, 15236 Frankfurt Oder, Germany. Phone:  +49 335 5625 146
Ruoyu Wang
Affiliation:
IHP Leibniz Institute for Innovative Microelectronics GmbH, Im Technologiepark 25, 15236 Frankfurt Oder, Germany. Phone:  +49 335 5625 146
Klaus Schmalz
Affiliation:
IHP Leibniz Institute for Innovative Microelectronics GmbH, Im Technologiepark 25, 15236 Frankfurt Oder, Germany. Phone:  +49 335 5625 146
Mohamed Elkhouly
Affiliation:
IHP Leibniz Institute for Innovative Microelectronics GmbH, Im Technologiepark 25, 15236 Frankfurt Oder, Germany. Phone:  +49 335 5625 146
Chang-Soon Choi
Affiliation:
IHP Leibniz Institute for Innovative Microelectronics GmbH, Im Technologiepark 25, 15236 Frankfurt Oder, Germany. Phone:  +49 335 5625 146
*
Corresponding author: S. Glisic Email: glisic@ihp-microelectronics.com

Abstract

A fully integrated transmitter (TX) and receiver (RX) front-end chipset, produced in 0.25 µm SiGe:C bipolar and complementary metal oxide semiconductor (BiCMOS) technology, is presented. The front-end is intended for high-speed wireless communication in the unlicensed ISM band of 9 GHz around 60 GHz. The TXand RX features a modified heterodyne topology with a sliding intermediate frequency. The TX features a 12 GHz in-phase and quadrature (I/Q) mixer, an intermediate frequency (IF) amplifier, a phase-locked loop, a 60 GHz mixer, an image-rejection filter, and a power amplifier. The RX features a low-noise amplifier (LNA), a 60 GHz mixer, a phase-locked loop (PLL), and an IF demodulator. The measured 1-dB compression point at the TX output is 12.6 dBm and the saturated power is 16.2 dBm. The LNA has measured noise figure of 6.5 dB at 60 GHz. Error-free data transmission with a 16 quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM) signal and data rate of 3.6 Gbit/s (without coding 4.8 Gbit/s) over 15 m was demonstrated. This is the best reported result regarding both the data rate and transmission distance in SiGe and CMOS without beamforming.

Type
Research Article
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Reynolds, S. et al. : A 16-element phased-array receiver IC for 60-GHz communications in SiGe BiCMOS, in IEEE Radio Frequency Integrated Circuits Symp. (RFIC), June 2010, 461464.CrossRefGoogle Scholar
[2]Sun, Y.; Borngräber, J.; Herzel, F.; Winkler, W.: A fully integrated 60 GHz LNA in SiGe:C BiCMOS technology, in Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Santa Barbara, USA, October 2005, 1417.Google Scholar
[3]Glisic, S.; Scheytt, J.C.: A 13.5-to-17 dBm P1 dB, selective high-gain power amplifier for 60 GHz applications in SiGe, in Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), October 2008.CrossRefGoogle Scholar
[4]Elkhouly, M.; Glisic, S.; Scheytt, C.: A 60 GHz wideband high output P1 dB up-conversion image rejection mixer in 0.25 µm SiGe technology, in 10th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), New Orleans, LA, 2010.Google Scholar
[5]Choi, C.-S.; Piz, M.; Herzel, F.; Grass, E.: Performance evaluation of Gbps OFDM PHY layers for 60-GHz wireless LAN systems, in Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC), September 2009.CrossRefGoogle Scholar
[6]Herzel, F.; Choi, C.-S.; Grass, E.: Frequency synthesis for 60-GHz OFDM transceivers, in European Conf. on Wireless Technology (EuWiT2008), Amsterdam, 2008, 7780.Google Scholar
[7]Glisic, S. et al. : A fully integrated 60 GHz transmitter front-end in SiGe BiCOMS technology, in 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Phoenix AZ, 2011.CrossRefGoogle Scholar
[8]Glisic, S.; Scheytt, J.C.: Integrated compact microstrip filters for 60 GHz applications, in European Microwave Conf. (EuMC), Amsterdam, October 2008.CrossRefGoogle Scholar
[9]Sun, Y.; Glisic, S.; Herzel, F.: A fully differential 60 GHz receiver front-end with integrated PLL in SiGe:C BiCMOS, in European Microwave Integrated Circuits Conf. (EuMIC), Manchester, UK, September 2006, 198201.CrossRefGoogle Scholar
[10]Herzel, F.; Glisic, S.; Winkler, W.: Integrated frequency synthesizer in SiGe BiCMOS technology for 60 and 24 GHz wireless applications. Electron. Lett., 43 (2007), 154156.CrossRefGoogle Scholar
[11]Herzel, F.; Osmany, S.A.; Scheytt, J.C.: Analytical phase-noise modeling and charge pump optimization for fractional-N PLLs. IEEE Trans. Circuits Syst. I, Regul. Pap., 57 (2010), 19141924.CrossRefGoogle Scholar
[12]Wang, R.; Sun, Y.; Scheytt, J. C.: An on-board differential bunny-ear antenna design for 60 GHz applications, in German Microwave Conf. (GeMiC2010), Berlin, 2010.CrossRefGoogle Scholar
[13]Reynolds, S. et al. : Second generation 60-GHz transceiver chipset supporting multiple modulations at Gb/s data rates, in Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), September 2007, 192197.CrossRefGoogle Scholar
[14]Tomkins, A.; Aroca, R.A.; Yamamoto, T.; Nicolson, S.T.; Doi, Y.; Voinigescu, S.P.: A zero-IF 60 GHz transceiver in 65 nm CMOS with > 3.5Gb/s links, in Custom Integrated Circuits Conf. (CICC), San Jose, September 2008.CrossRef+3.5Gb/s+links,+in+Custom+Integrated+Circuits+Conf.+(CICC),+San+Jose,+September+2008.>Google Scholar
[15]Marcu, C. et al. : A 90 nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry. J. Solid-State Circuits, 44 (2009), 314315.CrossRefGoogle Scholar
[16]Pinel, S. et al. : 60 GHz single-chip CMOS digital radios and phased array solutions for gaming and connectivity. J. Select Areas Commun, 27(8), (2009), 13471357.Google Scholar
[17]Valdes-Garcia, A. et al. : A SiGe BiCMOS 16-element phased-array transmitter for 60 GHz communications, in Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, February 2010, 218219.Google Scholar