Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T13:20:00.508Z Has data issue: false hasContentIssue false

Gunn-mounted active microstrip rectangular patch antenna – revisited

Published online by Cambridge University Press:  07 August 2013

Somnath Chatterjee*
Affiliation:
Kanailal Vidyamandir (Fr. Sec.), Chandernagore, Hooghly, West Bengal, India
Susmita Pal
Affiliation:
WEBEL, Kolkata, West Bengal, India
Apala Bhattacharaya
Affiliation:
Vivekananda Mahavidyalaya, Burdwan, West Bengal, India
Baidynath N. Biswas
Affiliation:
Sir J. C. Bose School of Engineering, Mankundu, Hooghly, West Bengal, India
*
Corresponding author: S. Chatterjee Email: somnathchat@yahoo.com

Abstract

The microstrip active patch antenna behaves like a resonant circuit/cavity with multiple resonant frequencies; furthermore, depending on the non-linearity of the device, it generates significant amount of second harmonic radiation. The location of the device on the patch that maximizes the fundamental radiated power output is found to be not the position corresponding to the minimum second harmonic content in radiated power. An optimum location of the diode on the patch has been suggested. The paper also discusses the modification of the behavior of the active antenna, which is first an oscillator; and then a radiator, under injection-locked condition. The results are presented with respect to a Gunn-mounted rectangular patch.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Morris, G.; Thomas, H.J.; Fudge, D.L.: Active patch antennas, in Military Microwave Conf., London, 1984, 245249.Google Scholar
[2]Chang, K.; Hummer, K.A.; Gopalakrishnan, G.: Active radiating element using FET source integrated with microstrip patch antenna. Electron. Lett., 24 (21) (1988), 13471348.Google Scholar
[3]Biswas, B.N.; Bhattacharya, A.; Mondal, D.; Bose, A.; Pal, S.: Active rectangular microstrip antenna revisited. IETE J. Research, 45 (2) (1999), 135145.CrossRefGoogle Scholar
[4]Pues, H.; Van de Capelle, A.: Accurate transmission line model of rectangular microstrip antenna. Proc. Inst. Electron. Eng., 131 (1984), pt. H, 334340.Google Scholar
[5]Navarro, J.A.; Chang, K.: Electronic beam steering of active antenna. Electron. Lett., 29 (3) (1993), 302304.CrossRefGoogle Scholar
[6]Liao, P.; York, R.A.: Phase-shifter less beam-scanning using coupled-oscillators, theory and experiment, in IEEE Antennas Propagation Int. Symp., 1993, 668671.Google Scholar
[7]Koepf, G.A.: Optical processor for phased-array antenna beam formation. Opt. Technol. Microw. Appl., 477 (1984), 7581.Google Scholar
[8]Dolfi, D.; Joffre, P.; Antoine, J.; Huignard, J.P.; Phillippet, D.; Granger, P.: Experimental demonstration of phase array antenna optically controlled with phase time delays. Appl. Opt., 35 (1996), 52935300.Google Scholar
[9]Biswas, B.N.: Phase-Lock Theories and Applications, Oxford and IBH, New Delhi, 1988.Google Scholar
[10]Navarro, N.A.; Chang, K.: Integrated Active Antennas and Spatial Power Combining, John Wiley & Sons, New York, 1996.Google Scholar
[11]Andrews, J.W.; Hall, P.S.: Oscillator stability and phase noise reduction in phase locked active microstrip patch antenna. Electron. Lett., 34 (9) (1998), 833835.Google Scholar
[12]Chu, Q.-X.; Lau, Y.-P.; Chang, F.-Y.: Transient analysis of microwave active circuits based on time-domain characteristic models. IEEE Trans. Microw. Theory Tech., MTT- 46 (8) (1996), 10971104.Google Scholar
[13]Montiel, C.M.; Lu, F.; Chang, K.: A novel active antenna with self-mixing and wideband varactor-tuning capabilities for communication and vehicle identification applications. IEEE Trans. Microw. Theory Tech., 44 (12) (1996), 24212430.Google Scholar
[14]Chang, K.; Hummer, K.A.; Klein, J.L.: Experiments on injection-locking of active antenna elements for active phased arrays and spatial power combiners. IEEE Trans. Microw. Theory Tech., MTT- 37 (1989), 10781084.Google Scholar
[15]Solbach, K.: Simulation study of harmonic oscillators. IEEE Trans. Microw Theory Tech., 30 (8) (1982), 12371238.Google Scholar
[16]Buesnel, G.R.; Cryan, M.J.; Hall, P.S.: Harmonic control in active integrated patch oscillator. Electron. Lett., 34 (3) (1998), 228.Google Scholar
[17]Biswas, B.N.; Bhattacharya, A.; Mondal, D.; Bose, A.; Lahiri, P.: Harmonics in active microstrip patch antennas, in Proc. INCURSI-99, Burdwan, India, 1999, 2223.Google Scholar
[18]Sze, J.Y.; Hu, T.H.; Chen, T.J.: Compact dual-band annular-ring slot antenna with meandered grounded strip. Prog. Electromagn. Res., 95 (2009), 299308.Google Scholar
[19]Liu, F.S.; Shi, X.W.; Liu, S.D.: Study on the impedance-matching technique for high-temperature superconducting microstrip antennas. Prog. Electromagn. Res., 77 (2007), 281284.CrossRefGoogle Scholar
[20]Kusuma, A.H.; Sheta, A.F.; Elshafiey, I.M.; Siddiqui, Z.; Alkanhal, M.A.S.; Aldosari, S.; Alshebeili, S.A.; Mahmoud, S.F.: A new low SAR antenna structure for wireless handset applications. Prog. Electromagn. Res., 112 (2011), 2340.Google Scholar
[21]Chatterjee, S.; Bhattacharaya, A.; Biswas, B.N.: Active rectangular patch antenna – a new design philosophy. Int. J. Electron. Commun. Eng. Technol. (IJECET), 3 (1) (2012), 220228.Google Scholar
[22]Chatterjee, S.; Biswas, B.N.: Active slot-ring antennas as a receiver. Prog. Electromagn. Res. Lett., 32 (2012), 5968.Google Scholar
[23]Kurokawa, K.: Injection locking of microwave solid-state oscillators. Proc IEEE, 61 (1973), 13861410.CrossRefGoogle Scholar
[24]Agrawal, A.; Singhal, P.K.; Jain, A.: Design and optimization of a microstrip patch antenna for increased bandwidth. Int. J. Microw. Wirel. Technol., (2013), doi: 10.1017/S1759078713000160.Google Scholar
[25]Karthaus, U.; Stephan, A.; Ahmed, E.; Horst, W.: A 2-bit, 3.1 GS/s, band-pass DSM receiver for active antenna systems. Int. J. Microw. Wirel. Technol., (2013), doi: 10.1017/S1759078713000305.Google Scholar
[26]Saleh, K.; Pierre-Henri, M.; Amel, A.-S.; Olivier, L.; Gilles, C.: Study of the noise processes in microwave oscillators based on passive optical resonators. Int. J. Microw. Wirel. Technol., (2013), doi: 10.1017/S1759078713000354.Google Scholar