Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 8
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Brun, Christophe Yap, Chin Chong Tan, Dunlin Bila, Stephane Pacchini, Sebastien Baillargeat, Dominique and Tay, Beng Kang 2013. Flip Chip Based on Carbon Nanotube–Carbon Nanotube Interconnected Bumps for High-Frequency Applications. IEEE Transactions on Nanotechnology, Vol. 12, Issue. 4, p. 609.


    Xu, Naiyun Tsang, Siu Hong Tay, Beng Kang Teo, Edwin Hang Tong and Ng, Chee Mang 2013. Growth of Carbon Nanotubes on Carbon/Cobalt Films with Different sp2/sp3Ratios. Journal of Nanomaterials, Vol. 2013, p. 1.


    Yap, Chin Chong Tan, Dunlin Brun, Christophe Li, Hong Teo, Edwin Hang Tong Dominique, Baillargeat and Tay, Beng Kang 2013. 2013 IEEE 5th International Nanoelectronics Conference (INEC). p. 4.

    Xu, Naiyun Teo, Hang Tong Edwin Shakerzadeh, Maziar Wang, Xincai Ng, Chee Mang and Tay, Beng Kang 2012. Electrical properties of textured carbon film formed by pulsed laser annealing. Diamond and Related Materials, Vol. 23, p. 135.


    Yap, Chin Chong Brun, Christophe Tan, Dunlin Li, Hong Teo, Edwin Hang Tong Baillargeat, Dominique and Tay, Beng Kang 2012. Carbon nanotube bumps for the flip chip packaging system. Nanoscale Research Letters, Vol. 7, Issue. 1, p. 105.


    Brun, Christophe Franck, Pierre Yap Chin Chong, Tan, Dunlin Teo Hang Tong, Edwin Bila, Stephane Baillargeat, Dominique and Tay, Beng Kang 2011. 2011 IEEE 13th Electronics Packaging Technology Conference. p. 158.

    Tan, D.L. Yap, C.C. Li, X.C. Wei, J. Baillargeat, D. and Tay, B.K. 2011. 2011 IEEE 13th Electronics Packaging Technology Conference. p. 104.

    Yap, Chin Chong Dunlin Tan, Brun, Christophe Edwin Hang Tong Teo, Jun Wei, Dominique, Baillargeat and Beng Kang Tay, 2011. 2011 IEEE 13th Electronics Packaging Technology Conference. p. 195.

    ×
  • International Journal of Microwave and Wireless Technologies, Volume 2, Issue 5
  • October 2010, pp. 463-469

Impact of the CNT growth process on gold metallization dedicated to RF interconnect applications

  • Chin Chong Yap (a1) (a2), Dunlin Tan (a1) (a2), Christophe Brun (a1) (a3), Hong Li (a2), Edwin Hang Tong Teo (a1) (a2), Dominique Baillargeat (a1) and Beng Kang Tay (a1) (a2)
  • DOI: http://dx.doi.org/10.1017/S1759078710000681
  • Published online: 25 November 2010
Abstract

Carbon nanotubes (CNTs) are a unique group of materials with high aspect ratio, mechanical and electrical properties, which are of great interests in the field of interconnects, and radio frequency applications. In order to incorporate CNTs into any of these applications successfully, one important issue that has to be resolved is the critical parameters (temperature and reactant gases) associated with the growth of the CNTs. As such, the effect of these growth requirements on the adjacent components should be studied. In this work, we examined specifically the effect of carbon nanotubes growth on the underlying metallization, in particular gold, dedicated for radio-frequency-based applications. The gold coplanar lines were annealed at 800°C in a plasma-enhanced chemical vapor deposition (PECVD) system to simulate the worst-case condition. The reflection and transmission parameters were analyzed using a probe station connected to a vector network analyzer. Carbon nanotubes grown on different barrier layers were also characterized using a scanning electron microscope and Raman spectroscopy to identify a suitable barrier layer for gold. Our results showed that it is promising to integrate carbon nanotubes grown using PECVD onto Au coplanar waveguide without degrading the S-parameters measurements up to 20 GHz.

Copyright
Corresponding author
Corresponding author: D. Baillargeat Email: dbaillargeat@ntu.edu.sg
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]T.Y. Tsai ; C.Y. Lee ; N.H. Tai ; W.H. Tuan : Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices. Appl. Phys. Lett., 95 (2009), 013107–013103. doi: 10.1063/1.3167775

[2]R.M. Stevens ; C.V. Nguyen ; M. Meyyappan : Carbon nanotube scanning probe for imaging in aqueous environment. IEEE Trans.00 NanoBiosci., 3 (2004), 5660. doi: 10.1109/TNB.2004.824275

[3]K.P. Yung ; J. Wei ; B.K. Tay : Formation and assembly of carbon nanotube bumps for interconnection applications. Diamond Relat. Mater., 18 (2009), 11091113. doi: 10.1016/j.diamond.2009.02.022

[4]K. Kordas : Chip cooling with integrated carbon nanotube microfin architectures. Appl. Phys. Lett., 90 (2007), 123105–123103. doi: 10.1063/1.2714281

[5]S. Hermann ; B. Pahl ; R. Ecke ; S.E. Schulz ; T. Gessner : Carbon nanotubes for nanoscale low temperature flip chip connections. Microelectron. Eng., 87 (2010), 438442. doi: 10.1016/j.mee.2009.05.027

[6]M.V. Shuba ; G.Y. Slepyan ; S.A. Maksimenko ; C. Thomsen ; A. Lakhtakia : Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys. Rev. B, 79 (2009), 155403. doi: 10.1103/PhysRevB.79.155403

[7]C.Y. Lee ; H.M. Tsai ; H.J. Chuang ; S.Y. Li ; P. Lin ; T.Y. Tseng : Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. J. Electrochem. Soc., 152 (2005), A716A720. doi: 10.1149/1.1870793

[8]B.Q. Wei ; R. Vajtai ; P.M. Ajayan : Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett., 79 (2001), 11721174. doi: 10.1063/1.1396632

[9]J. Dijon ; A. Fournier ; P.D. Szkutnik ; H. Okuno ; C. Jayet ; M. Fayolle : Carbon nanotubes for interconnects in future integrated circuits: The challenge of the density. Diamond Relat. Mater., 19 (2010), 382388. doi: 10.1016/j.diamond.2009.11.017

[10]J. Li : Bottom-up approach for carbon nanotube interconnects. Appl. Phys. Lett., 82 (2003), 24912493. doi: 10.1063/1.1566791

[11]A. Kumar ; V.L. Pushparaj ; S. Kar ; O. Nalamasu ; P.M. Ajayan ; R. Baskaran : Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl. Phys. Lett., 89 (2006), 163120163123. doi: 10.1063/1.2356899

[12]P.J. Burke : Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol., 1 (2002), 129144. doi: 10.1109/TNANO.2002.806823

[13]P.J. Burke : Corrections to “An RF Circuit Model for Carbon Nanotubes”. IEEE Trans. Nanotechnol., 3 (2004), 331331. doi: 10.1109/TNANO.2004.828578

[14]P.J. Burke : AC performance of nanoelectronics: towards a ballistic THz nanotube transistor. Solid-State Electron., 48 (2004), 19811986. doi: 10.1016/j.sse.2004.05.044

[15]P.J. Burke ; C. Rutherglen ; Z. Yu : Single-walled carbon nanotubes: applications in high frequency electronics. Int. J. High Speed Electron. Syst., 16 (2006), 977999

[16]P.J. Burke : An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol., 2 (2003), 5558. doi: 10.1109/TNANO.2003.808503

[17]J.J. Plombon ; K.P. O'Brien ; F. Gstrein ; V.M. Dubin ; Y. Jiao : High-frequency electrical properties of individual and bundled carbon nanotubes. Appl. Phys. Lett., 90 (2007), 063106–063103

[18]Z. Yu ; P.J. Burke : Microwave transport in metallic single-walled carbon nanotubes. Nano Lett., 5 (2005), 14031406. doi: 10.1021/nl050738k

[19]M. Zhang ; X. Huo ; P.C.H. Chan ; Q. Liang ; Z.K. Tang : Radio-frequency characterization for the single-walled carbon nanotubes. Appl. Phys. Lett., 88 (2006), 163109–163103.

[20]G.F. Close ; S. Yasuda ; B. Paul ; S. Fujita ; H.S.P. Wong : A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. Nano Lett., 8 (2008), 706709. doi: 10.1021/nl0730965

[21]G.D. Nessim : Low temperature synthesis of vertically aligned carbon nanotubes with electrical contact to metallic substrates enabled by thermal decomposition of the carbon feedstock. Nano Lett., 9 (2009), 33983405. doi: 10.1021/nl900675d

[22]B. Wang : Controllable preparation of patterns of aligned carbon nanotubes on metals and metal-coated silicon substrates. J. Mater. Chem., 13 (2003), 11241126. doi: 10.1039/b301061a

[23]K.P. Yung ; J. Wei ; Z.F. Wang ; B.K. Tay : Effects of under CNT metallization layers on carbon nanotubes growth. Mod. Phys. Lett. B, 22 (2008), 18271836.

[24]J. García-Céspedes : Efficient diffusion barrier layers for the catalytic growth of carbon nanotubes on copper substrates. Carbon, 47 (2009), 613621. doi: 10.1016/j.carbon.2008.10.045

[25]N. Bertrand ; B. Drevillon ; A. Gheorghiu ; C. Senemaud ; L. Martinu ; J.E. Klemberg-Sapieha : Adhesion improvement of plasma-deposited silica thin films on stainless steel substrate studied by x-ray photoemission spectroscopy and in situ infrared ellipsometry. J. Vacuum Sci. Technol. A: Vacuum Surf. Films, 16 (1998), 612. doi: 10.1116/1.581013

[26]V.L. De Los Santos : Crystallization and surface morphology of Au/SiO2 thin films following furnace and flame annealing. Surf. Sci., 603 (2009), 29782985. doi: 10.1016/j.susc.2009.08.011

[27]P. Wißmann ; H.-U. Finzel : The effect of annealing on the electrical resistivity of thin gold films. Springer Tracts Mod. Phys., 223 (2007), 3552. doi: 10.1007/3–540–48490-6_4

[30]A. Cao ; X. Zhang ; C. Xu ; J. Liang ; D. Wu ; B. Wei : Synthesis of well-aligned carbon nanotube network on a gold-patterned quartz substrate. Appl. Surf. Sci., 181 (2001), 234238. doi: 0.1016/S0169-4332(01)00396-8

[31]D. Takagi ; Y. Homma ; H. Hibino ; S. Suzuki ; Y. Kobayashi : Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett., 6 (2006), 26422645. doi: 10.1021/nl061797 g

[32]S. Bhaviripudi : CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc., 129 (2007), 15161517. doi: 10.1021/ja0673332

[33]Y. Zhang ; R. Li ; H. Liu ; X. Sun ; P. Mérel ; S. Désilets : Integration and characterization of aligned carbon nanotubes on metal/silicon substrates and effects of water. Appl. Surf. Sci., 255 (2009), 50035008. doi: 10.1016/j.apsusc.2008.12.053

[34]M.S. Dresselhausa ; G. Dresselhausb ; R. Saitoc ; A. Jorio : Raman spectroscopy of carbon nanotubes. Phys. Rep., 409 (2004), 4799. doi: 10.1016/j.physrep.2004.10.006

[35]X. Sun : The effect of catalysts and underlayer metals on the properties of PECVD-grown carbon nanostructures. Nanotechnology, 21 (2010), 045201. doi: 10.1088/0957-4484/21/4/045201

[36]G.D. Nessim ; D. Acquaviva ; M. Seita ; K.P. O'Brien ; C.V. Thompson : The critical role of the underlayer material and thickness in growing vertically aligned carbon nanotubes and nanofibers on metallic substrates by chemical vapor deposition. Adv. Funct. Mater., 20 (2010), 13061312. doi: 10.1002/adfm.200902265

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: