Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T05:49:19.306Z Has data issue: false hasContentIssue false

A Ku-band RF-MEMS frequency-reconfigurable multimodal bandpass filter

Published online by Cambridge University Press:  24 April 2014

Adrián Contreras
Affiliation:
Signal Theory and Communications Department, Technical University of Catalonia (UPC), Barcelona, Spain
Jasmina Casals-Terré
Affiliation:
Mechanical Engineering Department, Technical University of Catalonia (UPC), Barcelona, Spain
Lluís Pradell*
Affiliation:
Signal Theory and Communications Department, Technical University of Catalonia (UPC), Barcelona, Spain
Flavio Giacomozzi
Affiliation:
MEMS Research Unit, Fondazione Bruno Kessler (FBK), Trento, Italy
Jacopo Iannacci
Affiliation:
MEMS Research Unit, Fondazione Bruno Kessler (FBK), Trento, Italy
Miquel Ribó
Affiliation:
Engineering Department, La Salle – Ramon Llull University, Barcelona, Spain
*
Corresponding author: L. Pradell Email: pradell@tsc.upc.edu

Abstract

In this paper, a uniplanar RF-MEMS second-order bandpass filter with reconfigurable center frequency is presented. It is based on quarter-wavelength slotline resonators and coplanar waveguide (CPW)-to-slotline multimodal immitance inverters (MIIs), which are reconfigured using RF-MEMS switchable CPW air-bridges (SABs). The filter can be adequately explained and designed using multimodal theory and circuit models. A surface micromachining process on high-resistivity silicon substrate was used to fabricate the filter. Experimental results show frequency reconfiguration from 12 to 13 GHz, maintaining the same relative bandwidth, and insertion losses of 4.6 and 4.7 dB, respectively.

Type
Research Paper
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Rebeiz, G. et al. : Tuning in to RF MEMS. IEEE Microw. Mag., 10 (2009), 5572.Google Scholar
[2]Lucyszyn, S.: Review of radio frequency microelectromechanical systems technology. Science, measurement and technology. IEE Proc., 151 (2004), 93103.Google Scholar
[3]Ribó, M.; Pradell, L.: Circuit model for mode conversion in coplanar waveguide shunt impedances. Electron. Lett., 35 (1999), 713715.Google Scholar
[4]Contreras, A.; Pradell, L.; Ribó, M.: A novel tunable multimodal bandpass filter, in Proc. 41st European Microwave Conf. (EuMC), Manchester, UK, October 2011 1059–1062.Google Scholar
[5]Contreras, A.; Ribó, M.; Pradell, L.; Blondy, P.: Uniplanar bandpass filters based on multimodal immitance inverters and end-coupled slotline resonators. IEEE Trans. Microw. Theory Tech., 61 (2013), 7788.CrossRefGoogle Scholar
[6]Giacomozzi, F.; Mulloni, V.; Colpo, S.; Iannacci, J.; Margesin, B.; Faes, A.: A flexible fabrication process for RF MEMS devices. Romane J. Inf. Sci.Technol., 14 (2011), 259268.Google Scholar
[7]Contreras, A. et al. : A RF-MEMS switchable CPW air-bridge, in Proc. 7th European Microwave Integrated Circuits Conf. (EuMIC), Amsterdam, the Netherlands, November 2012, 441–444.Google Scholar
[8]Pothier, A. et al. : Low-loss 2-bit tunable bandpass filters using MEMS DC contact switches. IEEE Trans. Microw. Theory Tech., 53 (2005), 354360.CrossRefGoogle Scholar
[9]Rebeiz, G.M.: RF MEMS: Theory, Design, and Technology, John Wiley & Sons, Inc., Hoboken, New Jersey, 2003.Google Scholar
[10]Peroulis, D.; Pacheco, S.P.; Katehi, L.P B.: RF MEMS switches with enhanced power-handling capabilities. IEEE Trans. Microw. Theory Tech., 52 (2004), 5968.Google Scholar
[11]Ocera, A.; Farinelli, P.; Mezzanotte, P.; Sorrentino, R.; Margesin, B.; Giacomozzi, F.: A novel MEMS-tunable hairpin line filter on silicon substrate, in 36th European Microwave Conf., Manchester, 2006.CrossRefGoogle Scholar
[12]Fourn, E. et al. : MEMS switchable interdigital coplanar filter. IEEE Trans. Microw. Theory Tech., 51 (2003), 320324.Google Scholar
[13]Park, S.-J.; Lee, K.-Y.; Rebeiz, G.: Low-loss 5.15–5.70-GHz RF MEMS switchable filter for wireless LAN applications. IEEE Trans. Microw. Theory Tech., 54 (2006), 39313939.Google Scholar
[14]Reines, I.; Brown, A.; El-Tanani, M.; Grichener, A.; Rebeiz, G.: 1.6–2.4 GHz RF MEMS tunable 3-pole suspended combline filter, in Proc. IEEE MTT-S Int. Microwave Symp. Digest, Atlanta, USA, June 2008, 133–136.Google Scholar
[15]Entesari, K.; Rebeiz, G.M.: A differential 4-bit 6.5–10-GHz RF MEMS tunable filter. IEEE Trans. Microw. Theory Tech, 53 (2005), 11031110.Google Scholar
[16]Nordquist, C.D. et al. : An X-band to Ku-band RF MEMS switched coplanar strip filter. IEEE Microw. Wirel. Compon. Lett., 14 (2004), 425427.Google Scholar
[17]Chan, K.Y.; Fouladi, S.; Ramer, R.; Mansour, R.R.: RF MEMS switchable interdigital bandpass filter. IEEE Microw. Wirel. Compon. Lett., 22 (2012), 4446.Google Scholar
[18]Nordquist, C.D. et al. : X-band RF MEMS tuned combline filter. Electron. Lett., 41 (2005), 7677.Google Scholar
[19]Wolff, I.: Coplanar Microwave Integrated Circuits, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.Google Scholar
[20]Scarbrough, D.; Goldsmith, C.; Papapolymerou, J.; Yuan, Li: Miniature microwave RF MEMS tunable waveguide filter, in Proc. 39th European Microwave Conf. (EuMC), Rome, Italy, 29 September–1 October 2009, 1860–1863.Google Scholar