Skip to main content Accessibility help

Millimeter-wave interactions with the human body: state of knowledge and recent advances

  • Maxim Zhadobov (a1), Nacer Chahat (a1), Ronan Sauleau (a1), Catherine Le Quement (a2) and Yves Le Drean (a2)...


The biocompatibility of millimeter-wave devices and systems is an important issue due to the wide number of emerging body-centric wireless applications at millimeter waves. This review article provides the state of knowledge in this field and mainly focuses on recent results and advances related to the different aspects of millimeter-wave interactions with the human body. Electromagnetic, thermal, and biological aspects are considered and analyzed for exposures in the 30-100 GHz range with a particular emphasis on the 60-GHz band. Recently introduced dosimetric techniques and specific instrumentation for bioelectromagnetic laboratory studies are also presented. Finally, future trends are discussed.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Millimeter-wave interactions with the human body: state of knowledge and recent advances
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Millimeter-wave interactions with the human body: state of knowledge and recent advances
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Millimeter-wave interactions with the human body: state of knowledge and recent advances
      Available formats


Corresponding author

Corresponding author: M. Zhadobov Email:


Hide All
[1]Wells, J.: Faster than fiber: the future of multi Gb/s wireless. IEEE Microw. Mag., 10 (3) (2009), 104112.
[2]Straiton, A.W.: The absorption and reradiation of radio waves by oxygen and water vapor in the atmosphere. IEEE Trans. Antennas Propag., 23 (1975), 595597.
[3]Rosenkranz, P.W.: Shape of the 5 mm oxygen band in the atmosphere. IEEE Trans. Antennas Propag., 23 (1975), 498506.
[4]Daniels, R.C.; Murdock, J.N.; Rappaport, T.S.; Heath, R.W.: 60 GHz Wireless: up close and personal. IEEE Microw. Mag., 11 (2010), 4450.
[5]Hall, P.: Advances in antennas and propagation for body centric wireless communications, in European Conf. Antennas Propag. (EuCAP 2010), Barcelona, Spain, April 12–16, 2010.
[6]ICNIRP: Guidelines for limiting exposure to time varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys., 74 (1998), 494522.
[7]IEEE Std.: IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std., C95.1, (2005).
[8]Xiao, S.-Q.; Zhou, M.-T.; Zhang, Y.: Millimeter Wave Technology in Wireless PAN, LAN, and MAN, CRC Press, Boca Raton, FL 33499, USA, 2008.
[9]Smulders, P.: Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. IEEE Commun. Mag., 40 (2002), 140147.
[10]Kojima, M. et al. : Acute ocular injuries caused by 60-Ghz millimeter-wave exposure. Health Phys., 97 (2009), 212218.
[11]Kues, H.A.; D'Anna, S.A.; Osiander, R.; Green, W.R.; Monahan, J.C.: Absence of ocular effects after either single or repeated exposure to 10 mW/cm2 from a 60 GHz CW source. Bioelectromagnetics, 20 (1999), 463473.
[12]Duck, F.A.: Physical Properties of Tissue, Academic, Bath, UK, 1990. ISBN 0122228006.
[13]Ellison, W.J.: Permittivity of purewater, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100°C. J. Phys. Chem. Ref. Data, 36 (2007), 118.
[14]Gabriel, S.; Lau, R.W.; Gabriel, C.: The dielectric properties of biological tissues: II Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol., 41 (1996), 22512269.
[15]Gandhi, O.P.; Riazi, A.: Absorption of millimeter waves by human beings and its biological implications, IEEE Trans. Microw. Theory Tech., 34 (1986), 228235.
[16]Alabaster, C.M.: Permittivity of human skin in millimetre wave band. Electron. Lett., 39 (2003), 15211522.
[17]Hwang, H.; Yim, J.; Cho, J.-W.; Cheon, C.; Kwon, Y.: 110 GHz broadband measurement of permittivity on human epidermis using 1 mm coaxial probe. IEEE Int. Micro. Symp. Digest, 1 (2003), 399402.
[18]Alekseev, S.I.; Ziskin, M.C.: Human skin permittivity determined by millimeter wave reflection measurements. Bioelectromagnetics, 28 (2007), 331339.
[19]Zhadobov, M.; Sauleau, R.; Le Dréan, Y.; Alekseev, S.I.; Ziskin, M.C.: Numerical and experimental millimeter-wave dosimetry for in vitro experiments. IEEE Trans. Microw. Theory Tech., 56 (2008), 29983007.
[20]Alekseev, S.I.; Radzievsky, A.A.; Logani, M.K.; Ziskin, M.C.: Millimeter-wave dosimetry of human skin. Bioelectromagnetics, 29 (2008), 6570.
[21]Hertleer, C.; Tronquo, A.; Rogier, H.; Vallozzi, L.; Van Langenhove, L.: Aperture-coupled patch antenna for integration into wearable textile systems. IEEE Antennas Wirel. Propag. Lett., 6 (2007), 392395.
[22]Foster, K.R.; Kritikos, H.N.; Schwan, H.P.: Effect of surface cooling and blood flow on the microwave heating of tissue. IEEE Trans. Biomed. Eng., 25 (1978), 313316.
[23]Kanezaki, A.; Hirata, A.; Watanabe, S.; Shirai, H.: Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue. Phys. Med. Biol., 55 (2010), 46474659.
[24]Alekseev, S.I.; Ziskin, M.C.: Influence of blood flow and millimeter wave exposure on skin temperature in different thermal models. Bioelectromagnetics, 30 (2009), 5258.
[25]Alekseev, S.I.; Ziskin, M.C.: Millimeter-wave absorption by cutaneous blood vessels: a computational study. IEEE Trans. Biomed. Eng., 56 (2009), 23802388.
[26]Zhadobov, M. et al. : Evaluation of the potential biological effects of the 60-GHz millimeter waves upon human cells. IEEE Trans. Antennas Propag., 57 (2009), 29492956.
[27]Debouzy, J.C.; Crouzier, D.; Dabouis, V.; Malabiau, R.; Bachelet, C.; Perrin, A.: Biologic effects of millimeteric waves (94 GHz) are there long term consequences? Pathol. Biol., 55 (2007), 246–55.
[28]Kurogi, S.; Suzuki, Y.; Taki, M.: A novel in vitro exposure apparatus for 60 GHz millimeter-waves with post-wall waveguide, in Annual Meeting of BEMS, Seoul, June 14–18, 2010.
[29]Alekseev, S.I., Gordiienko, O.V.; Radzievsky, A.A.; Ziskin, M.C.: Millimeter wave effects on electrical responses of the sural nerve in vivo. Bioelectromagnetics, 31 (2010), 180190.
[30]Zhadobov, M.; Sauleau, R.; Vié, V.; Himdi, M.; Le Coq, L.; Thouroude, D.: Interactions between 60 GHz millimeter waves and artificial biological membranes: dependence on radiation parameters. IEEE Trans. Microw. Theory Tech., 54 (2006), 25342542.
[31]Bellossi, A.; Dubost, G.; Moulinoux, J.; Ruelloux, M.; Himdi, M.; Rocher, C.: Biological effects of millimeter-wave irradiation on mice – preliminary results. IEEE Trans. Microw. Theory Tech., 48 (2000), 21042110.
[32]Chen, Q.; Zeng, Q.; Lu, D.; Chiang, H.: Millimeter wave exposure reverses TPA sup-pression of gap junction intercellular communications in HaCaT human keratinocytes. Bioelectromagnetics, 25 (2004), 24.
[33]Safronova, V.G.; Gabdoulkhakova, A.G.; Santalov, B.F.: Immunomodulating action of low intensity millimeter waves on primed neutrophils. Bioelectromagnetics, 23 (2002), 599606.
[34]Szabo, I.; Rojavin, M.A.; Rojers, T.J.; Ziskin, M.C.: Reaction of keratinosytes to in vitro millimeter wave exposure. Bioelectromagnetics, 22 (2001), 358364.
[35]Szabo, I.; Manning, M.R.; Radzievsky, A.A.; Wetzel, M.A.; Rojers, T.J.; Ziskin, M.C.: Low power millimeter wave irradiation exerts no harmful effect on human keratinocytes in vitro. Bioelectromagnetics, 24 (2003), 65173.
[36]Cueille, M.; Collin, A.; Pivain, C.; Leveque, P.: Developement of a numerical model connecting electromagnetism, thermal and hydrodynamics in order to analyse in vitro exposure system. Ann. Telecommun., 63 (2008), 1728.
[37]Pakhomov, A.G.; Prol, H.K.; Mathur, S.P.; Akyel, Y.; Campbell, C.B.G.: Search for frequency-specific effects of millimeter-wave radiation on isolated nerve function. Bioelectromagnetics, 18 (1997), 324334.
[38]Zhadobov, M.; Sauleau, R.; Thouroude, D.; Nicolas Nicolaz, Ch.; Le Quément, C.; Le Dréan, Y.: Near-field electromagnetic dosimetry for in vitro studies at millimeter waves, in European Conf. on Antennas and Propagation (EuCAP 2010), Mo-17, Barcelone, Spain, April 2010.
[39]Suzuki, Y. et al. : Experimental analysis on the thermal convection of aqueous humor in anterior chamber driven by the millimeter-wave exposure at 77 GHz, in Annual Meeting of BEMS, Seoul, June 14–18, 2010.
[40]Zhao, J.X.; Wei, Z.: Numerical modeling and dosimetry of the 35 mm petri dish under 46 GHz millimeter wave exposure. Bioelectromagnetics, 26 (2005), 481488.
[41]Schuderer, J.; Kuster, N.: Effect of the meniscus at the solid/liquid interface on the SAR distribution in petri dishes and flasks. Bioelectromagnetics, 24 (2003), 103108.
[42]Gapeyev, A.B.; Mikhailik, E.N.; Chemeris, N.K.: Anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation: frequency and power dependence. Bioelectromagnetics, 29 (2008), 197206.
[43]Jauchem, J.R.; Ryan, K.L.; Frei, M.R.: Cardiovascular and thermal responses in rats during 94 GHz irradiation. Bioelectromagnetics, 20 (1999), 264267.
[44]Sypniewska, R.K.; Millenbaugh, N.J.; Kiel, J.L.; Blystone, R.V.; Ringham, H.N.; Mason, P.A.; Witzmann, F.A.: Protein changes in macrophages induced by plasma from rats exposed to 35 GHz millimeter waves. Bioelectromagnetics, 31 (2010), 656663.
[45]Alekseev, S.I.; Gordiienko, O.V.; Ziskin, M.C.: Reflection and penetration depth of millimeter waves in murine skin. Bioelectromagnetics, 29 (2008), 340344.
[46]Chen, Q.; Zeng, Q.L.; Lu, D.Q.; Chiang, H.: Millimeter wave exposure reverses TPA suppression of gap junction intercellular communicationin HaCaT human keratinocytes. Bioelectromagnetics, 25 (2004), 14.
[47]Nicolas Nicolaz, Ch. et al. : Study of narrow band millimeter-wave potential interactions with endoplasmic reticulum stress sensor genes. Bioelectromagnetics, 30 (2009), 365373.
[48]Suzuki, Y.; Shibuya, M.; Kurogi, S.; Taguchi, T.; Suzuki, Y.; Taki, M.: Millimeter-wave exposure apparatus with horn antenna and application to in vitro experiment, in Annual Meeting of BEMS, Seoul, June 14–18, 2010.
[49]Khizhnyak, E.P.; Ziskin, M.C.: Heating patterns in biological tissue phantoms caused by millimeter wave electromagnetic irradiation. IEEE Trans. Biomed. Eng., 41 (1994), 865873.
[50]Yu, G. et al. : A study on biological effects of low-intensity millimeter waves. IEEE Trans. Plasma Sci., 30 (2002), 14891496.
[51]Pakhomov, A.G.; Akyel, Y.; Pakhomova, O.N.; Stuck, B.E.; Murphy, M.R.: Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics, 19 (1998), 393413.
[52]Rojavin, M.A.; Ziskin, M.C.: Medical applications of millimeter waves. Int. J. Med., 91 (1998), 5766.
[53]Usichenko, T.I.; Edinger, H.; Gizhko, V.V.; Lehmann, C.; Wendt, M.; Feyerherd, F.: Low-intensity electromagnetic millimeter waves for pain therapy. Evid. Based Complement. Altern. Med., 3 (2006), 201207.
[54]Radzievsky, A.A.; Gordiienko, O.V.; Alekseev, S.; Szabo, I.; Cowan, A.; Ziskin, M.C.: Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids. Bioelectromagnetics, 29 (2008), 284295.
[55]Radzievsky, A.A.; Rojavin, M.A.; Cowan, A.; Alekseev, S.I.; Radzievsky, A.A. Jr.; Ziskin, M.C.: Peripheral neural system involvement in hypoalgesic effect of electromagnetic millimeter waves. Life Sci., 68 (2001), 11431151.
[56]Rojavin, M.A.; Radzievsky, A.A.; Cowan, A.; Ziskin, M.C.: Pain relief caused by millimeter waves in mice: results of cold water tail flick tests. Int. J. Radiat. Biol., 76 (2000), 575579.
[57]Rojavin, M.A., Ziskin, M.C.: Electromagnetic millimeter waves increase the duration of anaesthesia caused by ketamine and chloral hydrate in mice. Int. J. Radiat. Biol., 72 (1997), 475480.
[58]Lysenyuk, V.P.; Samosyuk, I.Z.; Kulikovich, Y.N.; Kozhanova, A.K.: Experimental study on the low-intensity millimeter-wave electro-magnetic stimulation of acupuncture points. Acupunct. Electrother. Res., 25 (2000), 9199.
[59]Vorobyov, V.V.; Khramov, R.N.: Hypothalamic effects of millimeter wave irradiation depend on location of exposed acupuncture zones in unanesthetized rabbits. Am. J. Chin. Med., 30 (2002), 2935.
[60]Usichenko, T.I.; Ivashkivsky, O.I.; Gizhko, V.V.: Treatment of rheumatoid arthritis with electromagnetic millimeter waves applied to acupuncture points – a randomized double blind clinical study. Acupunct. Electrother. Res., 28 (2003), 1118.
[61]Radzievsky, A.A.; Rojavin, M.A.; Cowan, A.; Alekseev, S.I.; Ziskin, M.C.: Hypoalgesic effect of millimeter waves in mice: dependence on the site of exposure. Life Sci., 66 (2000), 2101–2011.
[62]Szabo, I.; Rojavin, M.A.; Rogers, T.J.; Ziskin, M.C.: Reactions of keratinocytes to in vitro millimeter wave exposure. Bioelectromagnetics, 22 (2001), 358364.
[63]Makar, V.; Logani, M.; Szabo, I.; Ziskin, M.: Effect of millimeter waves on cyclophosphamide induced suppression of T cell functions. Bioelectromagnetics, 24 (2003), 356365.
[64]Makar, V.R.; Logani, M.K.; Bhanushali, A.; Alekseev, S.I.; Ziskin, M.C.: Effect of cyclophosphamide and 61.22 GHz millimeter waves on T-cell, B-cell, and macrophage functions. Bioelectromagnetics, 27 (2006), 458466.
[65]Lushnikov, K.V.; Shumilina, Y.V.; Yakushina, V.S.; Gapeev, A.B.; Sadovnikov, V.B.; Chemeris, N.K.: Effects of low-intensity ultrahigh frequency electromagnetic radiation on inflammatory processes. Bull. Exp. Biol. Med., 137 (2004), 364366.
[66]Gapeev, A.B.; Lushnikov, K.V.; Shumilina, Iu.V.; Chemeris, N.K.: Pharmacological analysis of anti-inflammatory effects of low-intensity extremely high-frequency electromagnetic radiation. Biofizika, 51 (2006), 10551068.
[67]Beneduci, A.; Chidichimo, G.; De Rose, R.; Filippelli, L.; Straface, S.V.; Venuta, S.: Frequency and irradiation time-dependant antiproliferative effect of low-power millimeter waves on RPMI 7932 human melanoma cell line. Anticancer Res., 25 (2005), 10231028.
[68]Beneduci, A.; Chidichimo, G.; Tripepi, S.; Perrotta, E.; Cufone, F.: Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: ultra-structural- and metabolic-induced changes. Bioelectrochemistry, 70 (2007), 214220.
[69]Beneduci, A.: Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells. Cell. Biochem. Biophys., 55 (2009), 2532.
[70]Logani, M.K.; Szabo, I.; Makar, V.; Bhanushali, A.; Alekseev, S.; Ziskin, M.C.: Effect of millimeter wave irradiation on tumor metastasis. Bioelectromagnetics, 27 (2006), 258264.
[71]Vijayalaxmi, ; Logani, M.K.; Bhanushali, A.; Ziskin, M.C.; Prihoda, T.J.: Micronuclei in peripheral blood and bone marrow cells of mice exposed to 42 GHz electromagnetic millimeter waves. Radiat. Res., 161 (2004), 341345.
[72]Zhadobov, M. et al. : Millimeter wave radiations at 60 GHz do not modify stress-sensitive gene expression of chaperone proteins. Bioelectromagnetics, 28 (2007), 188196.
[73]Nicolas Nicolaz, C. et al. : Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Cell. Biol. Toxicol., 25 (2009), 471478.
[74]Szabo, I.; Kappelmayer, J.; Alekseev, S.I.; Ziskin, M.C.: Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics, 27 (2006), 233244.
[75]Ramundo-Orlando, A. et al. : The response of giant phospholipid vesicles to millimeter waves radiation. Biochim. Biophys. Acta, 1788 (2009), 14971507.
[76]Ramundo-Orlando, A. et al. : Permeability changes induced by 130 GHz pulsed radiation on cationic liposomes loaded with carbonic anhydrase. Bioelectromagnetics, 28 (2007), 587598.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

International Journal of Microwave and Wireless Technologies
  • ISSN: 1759-0787
  • EISSN: 1759-0795
  • URL: /core/journals/international-journal-of-microwave-and-wireless-technologies
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed