Hostname: page-component-cb9f654ff-hn9fh Total loading time: 0 Render date: 2025-08-29T12:51:19.486Z Has data issue: false hasContentIssue false

New design of frequency-dependent phase shifter for array sensor applications

Published online by Cambridge University Press:  27 August 2025

Alejandro Javier Venere*
Affiliation:
Departamentos de Ingeniería en Telecomunicaciones, Comisión Nacional de Energía Atómica. Av. Bustillo, San Carlos de Bariloche, Bariloche, Rio Negro, Argentina Instituto Balseiro, Universidad Nacional de Cuyo, Comisión Nacional de Energía Atómica. Av. Bustillos, San Carlos de Bariloche, Bariloche, Río Negro, Argentina
Juan Pablo Pascual
Affiliation:
Departamentos de Ingeniería en Telecomunicaciones, Comisión Nacional de Energía Atómica. Av. Bustillo, San Carlos de Bariloche, Bariloche, Rio Negro, Argentina Instituto Balseiro, Universidad Nacional de Cuyo, Comisión Nacional de Energía Atómica. Av. Bustillos, San Carlos de Bariloche, Bariloche, Río Negro, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bustillos, San Carlos de Bariloche, Bariloche, Río Negro, Argentina
Jorge Cogo
Affiliation:
Universidad Nacional de Río Negro. CITECCA. Anasagasti, San Carlos de Bariloche, Bariloche, Río Negro, Argentina
*
Corresponding author: Alejandro Javier Venere; Email: alejandro.venere@gmail.com

Abstract

This article presents a microstrip phase shifter whose frequency-dependent phase response is designed to present the desired phase variation as a useful device for frequency-controlled antenna array systems. The architecture consists of the parallel connection of open-stubs on a main transmission line. The analytical model of the device is presented, its transfer function is derived and compared with a conventional transmission line. The theoretical results show that the phase and amplitude responses can be designed by selecting the number, the length, and the characteristic impedance of the open-stubs. In order to validate the frequency controlled phase shifter model an architecture is proposed, that consists of a three-port device based on a power divider with a phase shifter on one of the output ports and a conventional transmission line on the other. A prototype of this architecture has been manufactured to operate in a frequency range of 2.8 GHz to 3.4 GHz. The magnitude and phase measurements of the scattering parameters show good agreement with the theoretical predictions.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with The European Microwave Association.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Mailloux, R (3rd Ed.) (2017) Phased Array Antenna Handbook, Norwood, MA: Artech.Google Scholar
Ivić, I, Curtis, C, Forren, E, Mendoza, R, Schvartzman, D, Torres, S, Wasielewski, DJ, and Zahrai, FA (2019) An overview of weather calibration for the advanced technology demonstrator, 2019 IEEE International Symposium on Phased Array System & Technology (PAST). Waltham, MA, USA: IEEE.CrossRefGoogle Scholar
Danielsen, M and Jorgensen, R (1979) Frequency scanning microstrip antennas. IEEE Trans. Antennas Propag. 27(2), 146150.10.1109/TAP.1979.1142049CrossRefGoogle Scholar
Karimkashi, S, Zhang, G, Kishk, AA, Bocangel, W, Kelley, R, Meier, J and Palmer, RD (2013) Dual-polarization frequency scanning microstrip array antenna with low cross-polarization for weather measurements. IEEE Transactions on Antennas and Propagation 61(11), 54445452.CrossRefGoogle Scholar
Lv, X, Cao, W, Zeng, Z and Shi, S (2018) A circularly polarized frequency beam-scanning antenna fed by a microstrip spoof spp transmission line. IEEE Antennas and Wireless Propagation Letters (AWPL) 17(7), 13291333.10.1109/LAWP.2018.2844288CrossRefGoogle Scholar
Fackelmeier, A, and Biebl, E (2010) Narrowband frequency scanning array antenna at 5.8 GHz for short range imaging, 2010 IEEE MTT-S International Microwave Symposium. Anaheim, CA, USA: IEEE.10.1109/MWSYM.2010.5515813CrossRefGoogle Scholar
Ren, D, Choi, JH and Itoh, T (2017) Series feed networks for dual-polarized frequency scanning phased array antenna based on composite right/left-handed transmission line. IEEE Transactions on Microwave Theory and Techniques (T-MTT) 65(12), 51335143.10.1109/TMTT.2017.2764092CrossRefGoogle Scholar
Nishio, T, Xin, H, Wang, Y and Itoh, T. (2004) A frequency-controlled active phased array. IEEE Microwave and Wireless Components Letters (MWCL) 14(3), 115117.CrossRefGoogle Scholar
Pozar, D. M. (4th Ed.) (2011) Microwave Engineering, Hoboken, NJ: John Wiley & Sons. Inc.Google Scholar
Ooi, B-L, Palei, W and Leong, MS (2002) Broad-banding technique for in-phase hybrid ring equal power divider. IEEE Transactions on Microwave Theory and Techniques (T-MTT) 50(7), 17901794.Google Scholar