Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T13:46:40.376Z Has data issue: false hasContentIssue false

A novel ACPW-fed quad-band hybrid antenna for wireless applications

Published online by Cambridge University Press:  16 January 2018

Wang Ren*
Affiliation:
School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, China. Phone: +86 138-6745-6226
Li-Juan Zhang
Affiliation:
School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, China. Phone: +86 138-6745-6226
Shu-Wei Hu
Affiliation:
School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou, China. Phone: +86 138-6745-6226
*
Corresponding author: W. Ren Email: renwang_zju@hotmail.com

Abstract

This paper presents a novel asymmetric coplanar waveguide-fed quad-band hybrid antenna for wireless applications. The proposed hybrid antenna combines a conventional monopole antenna and a zeroth-order resonator antenna to perform a dual-mode operation. The first mode is generated by a slotted monopole antenna, supporting the two higher resonances at about 3.5 and 5.8 GHz. The second mode is supported by loading a composite right-/left-handed transmission line unit cell near the slotted monopole, contributing to the two lower resonances at about 1.6 and 2.5 GHz. It is printed on an FR4 substrate with the overall dimensions of 40 mm × 24 mm × 1.6 mm. Experimental results demonstrate that it can cover the global positioning system (1.57–1.59 GHz), wireless local area network (2.4–2.485, 5.15–5.35, and 5.725–5.825 GHz), and worldwide interoperability for microwave access (2.5–2.69, 3.3–3.7, and 5.25–5.85 GHz) applications with monopole-like radiation patterns and acceptable gains.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Li, J.L.; Shi, H.Y.; Li, H.; Zhang, A.X.: Quad-band probe-fed stacked annular patch antenna for GNSS applications. IEEE Antennas Wireless Propag. Lett., 13 (2014), 372375.CrossRefGoogle Scholar
[2]Wang, W.; Xing, M.J.; Guo, X.Y.: A novel design of quad-band combination of circularly polarized microstrip antenna, in Progress in Electromagnetic Research Symp., 2016, 44914494.CrossRefGoogle Scholar
[3]Yang, Y.; Liu, Y.A.; Wu, F.: A quad-band compact diversity antenna for mobile handset devices. Int. J. Future Gener. Commun. Netw., 9 (2016), 363372.Google Scholar
[4]Cao, Y.-F.; Cheung, S.-W.; Yuk, T.-I.: A multiband slot antenna for GPS/WiMAX/WLAN systems. IEEE Trans. Antennas Propag., 63 (2015), 952958.CrossRefGoogle Scholar
[5]Liu, H.-W.; Wen, P.; Zhu, S.-S.; Ren, B.-P.; Guan, X.-H.; Yu, H.: Quad-band CPW-fed monopole antenna based on flexible pentangle-loop radiator. IEEE Antennas Wireless Propag. Lett., 14 (2015), 13731376.Google Scholar
[6]Pushkar, P.; Gupta, V.R.: A metamaterial based tri-band antenna for WiMAX/WLAN application. Microwave Opt. Technol. Lett., 58 (2016), 558561.CrossRefGoogle Scholar
[7]Boukarkar, A.; Lin, X.-Q.; Jiang, Y.; Yu, Y.-Q.: Miniaturized single-feed multiband patch antennas. IEEE Trans. Antennas Propag., 65 (2017), 850854.CrossRefGoogle Scholar
[8]Chen, C.-C.; Sim, C.-Y.-D.; Chen, F.-S: A novel compact quad-band narrow strip-loaded printed monopole antenna. IEEE Antennas Wireless Propag. Lett., 8 (2009), 974976.CrossRefGoogle Scholar
[9]Du, Y.Y.; Zhao, A.P.: An internal quad-band printed monopole antenna for oval-shaped mobile terminals. IEEE Trans. Magn., 48 (2012), 683686.CrossRefGoogle Scholar
[10]Singh, H.S.; Agarwal, M.; Pandey, G.K.; Meshram, M.K.: A quad-band compact diversity antenna for GPS L1/Wi-Fi/LTE2500/WiMAX/HIPERLAN1 applications. IEEE Antennas Wireless Propag. Lett., 13 (2014), 249252.CrossRefGoogle Scholar
[11]Caloz, C.; Itoh, T.: Electromagnetic Metamaterials, Wiley-IEEE Press, Piscataway, Hoboken, NJ, 2005.Google Scholar
[12]Lai, A.; Itoh, T.; Caloz, C.: Composite right/left-handed transmission line metamaterials. IEEE Microw. Mag., 5 (2004), 3450.CrossRefGoogle Scholar
[13]Chi, P.-L.; Shih, Y.-S.: Compact and bandwidth-enhanced zeroth-order resonant antenna. IEEE Antennas Wireless Propag. Lett., 14 (2015), 285288.CrossRefGoogle Scholar
[14]Sharma, S.K.; Gupta, A.; Chaudhary, R.K.: Epsilon negative CPW-fed zeroth-order resonating antenna with backed ground plane for extended bandwidth and miniaturization. IEEE Trans. Antennas Propag., 63 (2015), 51975202.CrossRefGoogle Scholar
[15]Liu, L.-Y.; Wang, B.-Z.: Compact circularly polarized ZOR and FOR antenna employing CRLH transmission lines. Microwave Opt. Technol. Lett., 58 (2016), 964969.CrossRefGoogle Scholar
[16]Sadeghzadeh, R.A.: Low profile antenna based on CRLH-TL with broad bandwidth. Microw. Opt. Technol. Lett., 58 (2016), 2731.CrossRefGoogle Scholar
[17]Jang, T.; Choi, J.; Lim, S.: Compact coplanar waveguide-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on vialess single layer. IEEE Trans. Antennas Propag., 59 (2011), 363372.CrossRefGoogle Scholar