Skip to main content Accessibility help
×
Home

Separately-designable diplexer with multiple transmission zeroes using common stub-loaded SIR

  • Yu-Jing Zhang (a1), Jing Cai (a2) and Jian-Xin Chen (a1)

Abstract

A separately-designable diplexer with multiple transmission zeroes (TZs) using common stub-loaded stepped impedance resonator (SIR) is proposed. The common stub-loaded SIR operating in third harmonic (f3) and fifth harmonic (f5) is used for designing the two diplexer channels. The stub is loaded at the voltage-null point of f3 of the SIR. It can separately control f5 but has no effect on f3 so that the two channels can be separately designed. Meanwhile, the input port is tap-connected to the common stub-loaded SIR, which necessarily produces a TZ between f3 and f5, existing in both channel filtering responses. By properly choosing coupling schemes of the two channels, more TZs are realized at the desired locations. Thanks to the generation of the multiple TZs, both passband selectivity and isolation between the two channels are improved significantly. For demonstration, a diplexer operating at 2.22 and 2.95 GHz is designed, fabricated, and measured. The simulated and measured results are presented, showing good agreement.

Copyright

Corresponding author

Author for correspondence: Jing Cai, E-mail: caijing2005@163.com

References

Hide All
1.Zhou, K, Zhou, CX and Wu, W (2018) Compact SIW diplexer with flexibly allocated bandwidths using common dual-mode cavities. IEEE Microwave and Wireless Components Letters 28, 317319.
2.Dong, Y and Itoh, T (2011) Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design. IEEE Microwave and Wireless Components Letters 21, 1012.
3.Song, KJ, Zhou, Y, Chen, YX, Iman, AM, Patience, SR and Fan, Y (2019) High-isolation diplexer with high frequency selectivity using substrate integrate waveguide dual-mode resonator. IEEE Access 7, 116676116683.
4.Nocella, V, Pelliccia, L, Farinelli, P, Sorrentino, R, Costa, M, Yufeng, D and Yanzhao, Z (2016) E-band cavity diplexer based on micromachined technology. International Journal of Microwave and Wireless Technologies 8, 179184.
5.Wong, SW, Li, JY, Yang, Y, Zhu, H, Chen, RS, Zhu, L and He, YJ (2020) Cavity balanced and unbalanced diplexer based on triple-mode resonator. IEEE Transactions on Industrial Electronics 67, 49694979.
6.Ezzeddine, H, Bila, S, Verdeyme, S, Seyfert, F, Pacaud, D, Puech, J and Estagerie, L (2012) Compact diplexers and triplexers implemented with dual-mode cavities. International Journal of Microwave and Wireless Technologies 4, 5158.
7.Qi, ZH, Li, XP and Zeng, JJ (2018) Wideband diplexer design and optimization based on back-to-back structured common port. IEEE Microwave and Wireless Components Letters 28, 320322.
8.Liu, HW, Xu, WY, Zhang, ZC and Guan, XH (2013) Compact diplexer using slotline stepped impedance resonator. IEEE Microwave and Wireless Components Letters 23, 7577.
9.Chen, D, Zhu, L, Bu, H and Cheng, C (2015) A novel planar diplexer using slotline-loaded microstrip ring resonator. IEEE Microwave and Wireless Components Letters 25, 706708.
10.Zheng, T, Wei, B, Gao, B, Guo, XB, Zhang, XP, Jiang, LA, Xu, Z and Heng, Y (2015) Compact superconducting diplexer design with conductor-backed coplanar waveguide structures. IEEE Transactions on Applied Superconductivity 25, 14.
11.Rezaei, A and Noori, L (2018) Novel compact microstrip diplexer for GSM applications. International Journal of Microwave and Wireless Technologies 10, 313317.
12.Peng, HS and Chiang, YC (2015) Microstrip diplexer constructed with new types of dual-mode ring filters. IEEE Microwave and Wireless Components Letters 25, 79.
13.Noori, L and Rezaei, A (2017) Design of a microstrip dual-frequency diplexer using microstrip cells analysis and coupled lines components. International Journal of Microwave and Wireless Technologies 9, 14671471.
14.Tizyi, H, Riouch, F, Tribak, A, Najid, A and Mediavilla, A (2018) Microstrip diplexer design based on two square open loop bandpass filters for RFID applications. International Journal of Microwave and Wireless Technologies 10, 412421.
15.Chuang, ML and Wu, MT (2011) Microstrip diplexer design using common T-shaped resonator. IEEE Microwave and Wireless Components Letters 21, 583585.
16.Guan, XH, Yang, FQ, Liu, HW and Zhu, L (2104) Compact and high-isolation diplexer using dual-mode stub-loaded resonators. IEEE Microwave and Wireless Components Letters 24, 385387.
17.Xu, J, Chen, ZY and Zhu, YX (2019) Dual-plane quadruplexer using common lumped-element quadruple-mode resonator. IEEE Microwave and Wireless Components Letters 29, 617619.
18.Xu, JX and Zhang, XY (2017) Compact high-isolation LTCC diplexer using common stub-loaded resonator with controllable frequencies and bandwidths. IEEE Transactions on Microwave Theory and Techniques 65, 46364644.
19.Xiao, J, Zhang, M and Ma, J (2018) A compact and high-isolated multiresonator-coupled diplexer. IEEE Microwave and Wireless Components Letters 28, 9991001.
20.Duong, T, Hong, W, Hao, Z, Huang, W, Zhuang, J and Vo, V (2016) A millimeter wave high-isolation diplexer using selectivity-improved dual-mode filters. IEEE Microwave and Wireless Components Letters 26, 104106.
21.Weng, M, Hung, C and Su, Y (2007) A hairpin line diplexer for direct sequence ultra-wideband wireless communications. IEEE Microwave and Wireless Components Letters 17, 519521.
22.Yang, T, Chi, P and Itoh, T (2010) High isolation and compact diplexer using the hybrid resonators. IEEE Microwave and Wireless Components Letters 20, 551553.
23.Xiao, J, Zhu, M, Li, Y, Tian, L and Ma, J (2015) High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling. IEEE Microwave and Wireless Components Letters 25, 781783.
24.Chen, C, Lin, C, Tseng, B and Chang, S (2014) High-isolation and high-rejection microstrip diplexer with independently controllable transmission zeros. IEEE Microwave and Wireless Components Letters 24, 851853.
25.Li, YL, Chen, JX, Qin, W, Lu, QY and Bao, ZH (2017) Millimetre-wave low-temperature co-fired ceramic bandpass filter with independently controllable dual passbands. IET Microwaves, Antennas & Propagation 11, 15581564.
26.Yan, J, Zhou, H and Cao, L (2016) Compact diplexer using microstrip half- and quarter-wavelength resonators. Electronics Letters 52, 16131615.
27.Feng, WJ, Gao, X and Che, WQ (2014) Microstrip diplexer for GSM and WLAN bands using common shorted stubs. Electronics Letters 50, 14861488.

Keywords

Separately-designable diplexer with multiple transmission zeroes using common stub-loaded SIR

  • Yu-Jing Zhang (a1), Jing Cai (a2) and Jian-Xin Chen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.