Skip to main content Accessibility help
Hostname: page-component-55597f9d44-ssw5r Total loading time: 0.472 Render date: 2022-08-16T23:58:39.117Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The effects of golf training in patients with stroke: a pilot study

Published online by Cambridge University Press:  08 January 2015

Tobias Schachten*
Institute of sport science, University of Regensburg, Germany
Petra Jansen
Institute of sport science, University of Regensburg, Germany
Correspondence should be addressed to: Tobias Schachten, Institute of sport science, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany. Phone: +49-941-943-2445. Email:



Stroke is the most common neurological disease and the primary cause of lifelong disability in industrialized countries. Because of this it is important to investigate any kind of successful therapy.


From the 24 recruited stroke patients who were between 23 and 72 years old, 14 patients were separated either in a golf training group (EG), or a social communication meeting (CG). Both groups met for one hour sessions, twice a week, for ten weeks. All participants completed assessment tests before and after the experimental period: cognitive tests measuring attention (Go/No-Go task), visual-spatial memory (Block-Tapping test) and mental rotation performance (MRT); a balance test (Berg Balance Scale), and an emotional well-being test (CES-D-Scale).


The results show that both groups improved in the CES Scale, the block-tapping test and the balance test. In addition, stroke patients who received a golf training showed a significant improvement in the MRT comparing to the control group (CG).


It is indicated that golf training can improve visual imagery ability in stroke patients, even late after stroke.

Research Article
Copyright © International Psychogeriatric Association 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Angevaren, M., Aufdemkampe, G., Verhaar, H. J. J., Aleman, A. and Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane database of systematic reviews (Online), 3, CD005381.Google Scholar
Arent, S. M., Landers, D. M. and Etnier, J. L. (2000). The effects of exercise on mood in older adults: a meta-analytic review. Journal of Aging and Physical Activity, 8, 407430.CrossRefGoogle Scholar
Berg, K., Wood-Dauphinee, S., Williams, J. I. and Gayton, D. (1989). Measuring balance in the elderly: preliminary development of an instrument. Physiotherapy Canada, 41, 304310.CrossRefGoogle Scholar
Boĭko, E. A., Kulishova, T. V., Shumakher, G. I. and Iusupkhodzhaev, R. V. (2008). The role of physical exercises in the improvement of cognitive functions in patients who survived stroke, in the early rehabilitative period. Voprosy Kurortologii, Fizioterapii, i Lechebnoĭ Fizicheskoĭ Kultury, 6, 912.Google Scholar
Cauraugh, J. H. and Summers, J. J. (2005). Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Progress in Neurobiology, 75, 309320.CrossRefGoogle ScholarPubMed
Chen, C., Leys, D. and Esquenazi, A. (2013). The interaction between neuropsychological and motor deficits in patients after stroke. Neurology, 80 (Suppl. 2), S27S34.CrossRefGoogle Scholar
Colcombe, S. and Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science, 14, 125130.CrossRefGoogle ScholarPubMed
Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. Dissertation Abstracts International, 34, 819B.Google Scholar
Cumming, T. B., Tyedin, K., Churilov, L., Morris, M. E. and Bernhardt, J. (2012). The effect of physical activity on cognitive function after stroke: a systematic review. International Psychogeriatrics/IPA, 24, 557567.CrossRefGoogle ScholarPubMed
das Nair, R. and Lincoln, N. (2008). Effectiveness of memory rehabilitation after stroke. Stroke, 39, 516.CrossRefGoogle Scholar
Dennis, A. et al. (2009). Fast walking under cognitive-motor interference conditions in chronic stroke. Brain Research, 1287, 104110.CrossRefGoogle ScholarPubMed
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U. and May, A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature, 427, 311312.CrossRefGoogle Scholar
Duncan, P. et al. (1998). A randomized, controlled pilot study of a home-based exercise program for individuals with mild and moderate stroke. Stroke; a Journal of Cerebral Circulation, 29, 20552060.CrossRefGoogle ScholarPubMed
Duncan, P. et al. (2003). Randomized clinical trial of therapeutic exercise in subacute stroke. Stroke; a Journal of Cerebral Circulation, 34, 21732180.CrossRefGoogle ScholarPubMed
Geary, D. C., Saults, S. J., Liu, F. and Hoard, M. K. (2000). Sex differences in spatial cognition, computational fluency, and arithmetical reasoning. Journal of Experimental Child Psychology, 77, 337353.CrossRefGoogle ScholarPubMed
Gordon, N. F. (2004). Physical activity and exercise recommendations for stroke survivors: an American heart association scientific statement from the council on clinical cardiology, subcommittee on exercise, cardiac rehabilitation, and prevention; the council on cardiovascular nursing; the council on nutrition, physical activity, and metabolism; and the stroke council. Circulation, 109, 20312041.CrossRefGoogle Scholar
Hautzinger, M. and Bailer, M. (1993). Allgemeine Depressions Skala - ADS. Weinheim: Beltz.Google Scholar
Hegarty, M. and Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 85, 479500.Google Scholar
Hillman, C. H., Erickson, K. I. and Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 5865.CrossRefGoogle ScholarPubMed
Hyndman, D., Ashburn, A., Yardley, L. and Stack, E. (2006). Interference between balance, gait and cognitive task performance among people with stroke living in the community. Disability and Rehabilitation, 28, 849856.CrossRefGoogle ScholarPubMed
Jäncke, L., Koeneke, S., Hoppe, A., Rominger, C. and Hänggi, J. (2009). The architecture of the golfer's brain. PloS one, 4, e4785.CrossRefGoogle ScholarPubMed
Jansen, P. and Dahmen-Zimmer, K. (2012). Effects of cognitive, motor, and karate training on cognitive functioning and emotional well-being of elderly people. Frontiers in Psychology, 3, 40.CrossRefGoogle ScholarPubMed
Jansen, P., Titze, C. and Heil, M. (2009). The influence of juggling on mental rotation performance. International Journal of Sport Psychology, 40, 351359.Google Scholar
Johnston, S. C., Mendis, S. and Mathers, C. D. (2009). Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling. The Lancet Neurology, 8, 345354.CrossRefGoogle Scholar
Jordan, K., Heinze, H. J., Lutz, K., Kanowski, M. and Jäncke, L. (2001). Cortical activations during the mental rotation of different visual objects. NeuroImage, 13, 143152.CrossRefGoogle ScholarPubMed
Kwakkel, G. et al. (2004). Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke; a Journal of Cerebral Circulation, 35, 25292539.CrossRefGoogle ScholarPubMed
Lai, S.-M., Studenski, S., Richards, L., Perera, S., Reker, D., Rigler, S. and Duncan, P. W. (2006). Therapeutic exercise and depressive symptoms after stroke. Journal of the American Geriatrics Society, 54, 240247.CrossRefGoogle ScholarPubMed
Lord, S. E., Rochester, L., Weatherall, M., McPherson, K. M. and McNaughton, H. K. (2006). The effect of environment and task on gait parameters after stroke: a randomized comparison of measurement conditions. Archives of Physical Medicine and Rehabilitation, 87, 967973.CrossRefGoogle ScholarPubMed
Marzolini, S., Oh, P., McIlroy, W. and Brooks, D. (2013). The effects of an aerobic and resistance exercise training program on cognition following stroke. Neurorehabilitation and Neural Repair, 27, 392402.CrossRefGoogle ScholarPubMed
Meltzoff, A., Kuhl, P., Movellan, J. and Sejnowski, T. (2009). Foundations for a new science of learning. Science, 325, 284288.CrossRefGoogle Scholar
Nosek, B. A. and Banaji, M. R. (2001). The Go/No-Go association task. Social Cognition, 19, 625666.CrossRefGoogle Scholar
Penninx, B. W. et al. (2001). Physical exercise and the prevention of disability in activities of daily living in older persons with osteoarthritis. Archives of Internal Medicine, 161, 23092316.CrossRefGoogle Scholar
Peters, M., Chisholm, P. and Laeng, B. (1995). Spatial ability, student gender and academic performance. Journal of Engineering Education, 84, 6073.CrossRefGoogle Scholar
Potempa, K., Lopez, M., Braun, L. T., Szidon, J. P., Fogg, L. and Tincknell, T. (1995). Physiological outcomes of aerobic exercise training in hemiparetic stroke patients. Stroke; a Journal of Cerebral Circulation, 26, 101105.CrossRefGoogle ScholarPubMed
Pyöriä, O., Talvitie, U., Nyrkkö, H., Kautiainen, H., Pohjolainen, T., and Kasper, V. (2007). The effect of two physiotherapy approaches on physical and cognitive functions and independent coping at home in stroke rehabilitation. A preliminary follow-up study. Disability and rehabilitation, 29, 503511.CrossRefGoogle ScholarPubMed
Quaney, B. M. et al. (2009). Aerobic exercise improves cognition and motor function poststroke. Neurorehabilitation and Neural Repair, 23, 879885.CrossRefGoogle ScholarPubMed
Roth, D. L. (1989). Acute emotional and psychophysiological effects of aerobic exercise. Psychophysiology, 26, 593602.CrossRefGoogle ScholarPubMed
Shatil, S., Ivanova, T. D., Mochizuki, G. and Garland, S. J. (2005). Effects of therapeutic golf rehabilitation on golf performance, balance, and quality of life in individuals following stroke: pilot study. Physiotherapy Canada, 57, 101112.CrossRefGoogle Scholar
Shepherd, R. B. (2001). Exercise and training to optimize functional motor performance in stroke: driving neural reorganization? Neural Plasticity, 8, 121129.CrossRefGoogle Scholar
Strawbridge, W. J., Deleger, S., Roberts, R. E. and Kaplan, G. A. (2002). Physical activity reduces the risk of subsequent depression for older adults. American Journal of Epidemiology, 156, 328334.CrossRefGoogle ScholarPubMed
Truelsen, T., Piechowski-Jozwiak, B., Bonita, R., Mathers, C., Bogousslavsky, J. and Boysen, G. (2006). Stroke incidence and prevalence in Europe: a review of available data. European Journal of Neurology, 13, 581598.CrossRefGoogle ScholarPubMed
van de Port, I. G. L., Wevers, L. E. G., Lindeman, E. and Kwakkel, G. (2012). Effects of circuit training as alternative to usual physiotherapy after stroke: randomised controlled trial. BMJ (Clinical Research ed.), 344, e2672.Google Scholar
Wevers, L., van de Port, I., Vermue, M., Mead, G. and Kwakkel, G. (2009). Effects of task-oriented circuit class training on walking competency after stroke: a systematic review. Stroke; a Journal of Cerebral Circulation, 40, 24502459.CrossRefGoogle ScholarPubMed
Wiedenbauer, G. and Jansen-Osmann, P. (2007). Mental rotation ability of children with spina bifida: what influence does manual rotation training have? Developmental Neuropsychology, 32, 809824.CrossRefGoogle Scholar
Wohlschlaeger, A. and Wohlschlaeger, A. (1998). Mental and manual rotation. Journal of Experimental Psychology. Human Perception and Performance, 24, 397412.CrossRefGoogle Scholar
Yang, Y.-R., Chen, Y.-C., Lee, C.-S., Cheng, S.-J., and Wang, R.-Y. (2007). Dual-task-related gait changes in individuals with stroke. Gait and Posture, 25, 185190.CrossRefGoogle ScholarPubMed
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The effects of golf training in patients with stroke: a pilot study
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The effects of golf training in patients with stroke: a pilot study
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The effects of golf training in patients with stroke: a pilot study
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *