Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T13:19:17.272Z Has data issue: false hasContentIssue false

Exploring the relationship between cognition and self-reported pain in residents of homes for the elderly

Published online by Cambridge University Press:  20 November 2008

Joukje M. Oosterman*
Affiliation:
Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands Department of Clinical Neuropsychology, Vrije Universiteit, Amsterdam, The Netherlands
Kerst de Vries
Affiliation:
Nursing Home St. Jacob, Osiragroep, Amsterdam, The Netherlands
H. Chris Dijkerman
Affiliation:
Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
Edward H. F. de Haan
Affiliation:
Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands Faculty of Social and Behavioural Sciences, University of Amsterdam, Amsterdam, The Netherlands
Erik J. A. Scherder
Affiliation:
Department of Clinical Neuropsychology, Vrije Universiteit, Amsterdam, The Netherlands
*
Correspondence should be addressed to: J.M. Oosterman, Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands. Phone: +31 30 253 3651; Fax number: +31 3025 34511. Email: j.m.oosterman@uu.nl.

Abstract

Background: Pain poses a major problem in older adults, specifically for those living in homes for the elderly. Previous research indicates that the presence of pain may be associated with changes in cognitive functions. It is unclear, however, how the reported experience of pain relates to cognitive functioning in elderly people with chronic pain. The present study was intended to examine the relationship between clinical pain experience and neuropsychological status in residents of homes for the elderly.

Methods: Forty-one residents suffering from arthritis or arthrosis completed tests measuring memory, processing speed, and executive function. The sensory-discriminative and the affective-motivational aspects of clinical pain were measured.

Results: Performance on executive function tests was positively related to self-reported pain experience. No relationship was observed between pain and memory or processing speed performance.

Conclusion: The present study shows that executive functioning is related to the severity of subjectively reported pain. Possible explanations for this association are discussed.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrindell, W. A. and Ettema, J. H. M. (1986). SCL-90: Handleiding bij een Multidimensionele PsychopathologieIndicator [Manual for a Multidimensional Psychopathology Indicator]. Lisse: Swets & Zeitlinger.Google Scholar
Baliki, M. N. et al. (2006). Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. Journal of Neuroscience, 26, 1216512173. DOI: 10.1523/JNEUROSCI.3576-06.2006.CrossRefGoogle ScholarPubMed
Bathgate, D., Snowden, J. S., Varma, A., Blackshaw, A. and Neary, D. (2001). Behaviour in frontotemporal dementia, Alzheimer's disease and vascular dementia. Acta Neurologica Scandinavica, 103, 367378. DOI: 10.1034/j.1600-0404.2001.2000236.x.CrossRefGoogle ScholarPubMed
Bieri, D., Reeve, R. A., Champion, G. D., Addicoat, L. and Ziegler, J. B. (1990). The Faces Pain Scale for the self-assessment of the severity of pain experienced by children: development, initial validation, and preliminary investigation for ratio scale properties. Pain, 41, 139150. DOI: 10.1016/0304-3959(90)90018-9.CrossRefGoogle ScholarPubMed
Bixby, W. R. et al. (2007). The unique relation of physical activity to executive function in older men and women. Medicine and Science in Sports and Exercise, 39, 14081416. DOI: 10.1249/mss.0b013e31806ad708.CrossRefGoogle ScholarPubMed
Eccleston, C. and Crombez, G. (1999). Pain demands attention: a cognitive-affective model of the interruptive function of pain. Psychological Bulletin, 125, 356366.CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle ScholarPubMed
Grisart, J., van der Linden, M. and Bastin, C. (2007). The contribution of recollection and familiarity to recognition memory performance in chronic pain patients. Behaviour Research and Therapy, 45, 10771084. DOI: 10.1016/j.brat.2006.05.002.CrossRefGoogle ScholarPubMed
Harman, K. and Ruyak, P. (2005). Working through the pain: a controlled study of the impact of persistent pain on performing a computer task. Clinical Journal of Pain, 21, 216222.CrossRefGoogle Scholar
Herr, K. A., Mobily, P. R., Kohout, F. J. and Wagenaar, D. (1998). Evaluation of the Faces Pain Scale for use with the elderly. Clinical Journal of Pain, 14, 2938.CrossRefGoogle ScholarPubMed
Heslinga, H., Van Den Burg, W. and Saan, R. J. (1983). Het Coderen van het Opleidingsniveau [The Coding of Level of Educational Attainment]. Groningen: Department of Neuropsychology, Groningen University.Google Scholar
Horgas, A. L. and Elliott, A. F. (2004). Pain assessment and management in persons with dementia. The Nursing Clinics of North America, 39, 593606. DOI: 10.1016/j.cnur.2004.02.013.CrossRefGoogle ScholarPubMed
Jack, C. R. Jr et al. . (1998). Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease. Neurology, 51, 993999.CrossRefGoogle ScholarPubMed
Karp, J. F. et al. (2006). The relationship between pain and mental flexibility in older adult pain clinic patients. Pain Medicine, 7, 444452. DOI: 10.1111/j.1526-4637.2006.00212.x.CrossRefGoogle ScholarPubMed
Lie, C. H., Specht, K., Marshall, J. C. and Fink, G. R. (2006). Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage, 30, 10381049. DOI: 10.1016/j.neuroimage.2005.10.031.CrossRefGoogle ScholarPubMed
McGrath, P. A., Seifert, C. E., Speechley, K. N., Booth, J. C., Stitt, L. and Gibson, M. C. (1996). A new analogue scale for assessing children's pain: an initial validation study. Pain, 64, 435443. DOI: 10.1016/0304-3959(95)00171-9.CrossRefGoogle ScholarPubMed
Nebel, K., Wiese, H., Stude, P., de Greiff, A., Diener, H. C. and Keidel, M. (2005). On the neural basis of focused and divided attention. Brain Research: Cognitive Brain Research, 25, 760776. DOI:10.1016/j.cogbrainres.2005.09.011.Google ScholarPubMed
Pickering, G., Chapuy, E., Eschalier, A. and Dubray, C. (2004). Memory impairment means less pain for mice. Gerontology, 50, 152156. DOI: 10.1159/000076772.CrossRefGoogle ScholarPubMed
Raz, N. et al. (1997). Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7, 268282.CrossRefGoogle ScholarPubMed
Reitan, R. M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276.CrossRefGoogle Scholar
Saan, R. J. and Deelman, B. G. (1986). Nieuwe 15-woorden test A en B (15WTA en 15WTB) [New version of the 15-word test (15WTA and 15WTB)]. In Bauma, A., Mulder, J. and Lindeboom, J. (eds.), Neuro-psychologische Diagnostiek Handboek [Neuro-Psychological Diagnostics Handbook] (pp. 1328). Lisse: Swets & Zeitlinger Publishers.Google Scholar
Scherder, E. J. and Bouma, A. (2000). Visual analogue scales for pain assessment in Alzheimer's disease. Gerontology, 46, 4753. DOI: 10.1159/000022133.CrossRefGoogle ScholarPubMed
Scherder, E. J., Sergeant, J. A. and Swaab, D. F. (2003). Pain processing in dementia and its relation to neuropathology. Lancet Neurology, 2, 677686. DOI: 10.1016/S1474-4422(03)00556-8.CrossRefGoogle ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.CrossRefGoogle Scholar
Tassain, V. et al. (2003). Long-term effects of oral sustained release morphine on neuropsychological performance in patients with chronic non-cancer pain. Pain, 104, 389400. DOI: 10.1016/S0304-3959(03)00047-2.CrossRefGoogle ScholarPubMed
Valet, M. et al. (2004). Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain, 109, 399408. DOI: 10.1016/j.pain.2004.02.033.CrossRefGoogle ScholarPubMed
van der Kloot, W. A., Oostendorp, R. A., van der Meij, J. and van den Heuvel, J. (1995). De Nederlandse versie van “McGill pain questionnaire”: een betrouwbare pijnvragenlijst [The Dutch version of the McGill pain questionnaire: a reliable pain questionnaire]. Nederlands Tijdschrift voor Geneeskunde, 139, 669673.Google Scholar
Vogt, B. A and Sikes, R. W. (2000). The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Progress in Brain Research, 122, 223235.CrossRefGoogle ScholarPubMed
Wechsler, D. (1987). Wechsler Memory Scale-Revised. New York: Psychological Corporation.Google Scholar
Weiner, D. K., Rudy, T. E., Morrow, L., Slaboda, J. and Lieber, S. (2006). The relationship between pain, neuropsychological performance, and physical function in community-dwelling older adults with chronic low back pain. Pain Medicine, 7, 6070. DOI: 10.1111/j.1526-4637.2006.00091.x.CrossRefGoogle ScholarPubMed
Won, A., Lapane, K., Gambassi, G., Bernabei, R., Mor, V. and Lipsitz, L. A. (1999). Correlates and management of nonmalignant pain in the nursing home. SAGE Study Group: Systematic Assessment of Geriatric Drug Use via Epidemiology. Journal of the American Geriatrics Society, 47, 936942.CrossRefGoogle Scholar