Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T14:43:52.531Z Has data issue: false hasContentIssue false

Frequency of cognitive “super-aging” in three Australian samples using different diagnostic criteria

Published online by Cambridge University Press:  24 November 2023

Alice Powell*
Affiliation:
Centre for Healthy Brain Ageing, Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
Ben C.P. Lam
Affiliation:
Centre for Healthy Brain Ageing, Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
David Foxe
Affiliation:
Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
Jacqueline C.T. Close
Affiliation:
Neuroscience Research Australia, University of New South Wales, Sydney, NSW, Australia School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
Perminder S. Sachdev
Affiliation:
Centre for Healthy Brain Ageing, Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, NSW, Australia
Henry Brodaty
Affiliation:
Centre for Healthy Brain Ageing, Discipline of Psychiatry & Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
*
Correspondence should be addressed to: Alice Powell, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia. Email: alice.powell@unsw.edu.au.

Abstract

Objectives:

To investigate the frequency of exceptional cognition (cognitive super-aging) in Australian older adults using different published definitions, agreement between definitions, and the relationship of super-aging status with function, brain imaging markers, and incident dementia.

Design:

Three longitudinal cohort studies.

Setting:

Participants recruited from the electoral roll, Australian Twins Registry, and community advertisements.

Participants:

Older adults (aged 65–106) without dementia from the Sydney Memory and Ageing Study (n = 1037; median age 78), Older Australian Twins Study (n = 361; median age 68), and Sydney Centenarian Study (n = 217; median age 97).

Measurements:

Frequency of super-aging was assessed using nine super-aging definitions based on performance on neuropsychological testing. Levels of agreement between definitions were calculated, and associations between super-aging status for each definition and functioning (Bayer ADL score), structural brain imaging measures, and incident dementia were explored.

Results:

Frequency of super-aging varied between 2.9 and 43.4 percent with more stringent definitions associated with lower frequency. Agreement between different criteria varied from poor (K = 0.04, AC1 = .24) to very good (K = 0.83, AC1 = .91) with better agreement between definitions using similar tests and cutoffs. Super-aging was associated with better functional performance (4.7–11%) and lower rates of incident dementia (hazard ratios 0.08–0.48) for most definitions. Super-aging status was associated with a lower burden of white matter hyperintensities (3.8–33.2%) for all definitions.

Conclusions:

The frequency of super-aging is strongly affected by the demographic and neuropsychological testing parameters used. Greater consistency in defining super-aging would enable better characterization of this exceptional minority.

Type
Original Research Article
Copyright
© International Psychogeriatric Association 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, D. G. (1991). Practical Statistics for Medical Research. London: Chapman and Hall.Google Scholar
Baran, T. M. and Lin, F. V. (2018). Amyloid and FDG PET of successful cognitive aging: global and cingulate-specific differences. Journal of Alzheimer’s Disease: JAD, 66, 307318. https://doi.org/10.3233/JAD-180360.CrossRefGoogle ScholarPubMed
Benton, A. (1967). Problems of test construction in the field of aphasia. Cortex, 3, 3258.CrossRefGoogle Scholar
Benton, A., Sivan, A. and Spreen, O. (1966). Der Benton Test. 7th edition, Bern: Huber.Google Scholar
Bertoldi, A. D., Hallal, P. C. and Barros, A. J. D. (2006). Physical activity and medicine use: evidence from a population-based study. BMC Public Health, 6, 224. https://doi.org/10.1186/1471-2458-6-224.CrossRefGoogle ScholarPubMed
Bezdicek, O. et al. (2021). Long-term cognitive trajectory and activities of daily living in healthy aging. Clinical Neuropsychologist, 35, 8. https://doi.org/10.1080/13854046.2020.1745895.Google ScholarPubMed
Blazer, D. G. (2006). Successful aging. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 14, 25. https://doi.org/10.1097/01.JGP.0000195222.93655.d1.CrossRefGoogle ScholarPubMed
Bohannon, R. (1995). Sit-to-stand test for measuring performance of lower extremity muscles. Perceptual and Motor Skills, 80, 163166.CrossRefGoogle ScholarPubMed
Borelli, W. V. et al. (2018). Operationalized definition of older adults with high cognitive performance. Dementia & Neuropsychologia, 12, 221227. https://doi.org/10.1590/1980-57642018dn12-030001.CrossRefGoogle ScholarPubMed
Borelli, W. V. et al. (2021). Increased glucose activity in subgenual anterior cingulate and hippocampus of high performing older adults, despite amyloid burden. Journal of Alzheimer’s Disease, 81(4), 1419–1428. https://doi.org/10.3233/JAD-210063.CrossRefGoogle Scholar
Bott, N. T. et al. (2017). Youthful processing speed in older adults: genetic, biological, and behavioral predictors of cognitive processing speed trajectories in aging. Frontiers in Aging Neuroscience, 9, 55. https://doi.org/10.3389/fnagi.2017.00055.CrossRefGoogle ScholarPubMed
Brandt, J. (1991). The Hopkins verbal learning test: Development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5, 125142.CrossRefGoogle Scholar
Cabeza, R. et al. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage, 17, 13941402. https://doi.org/10.1006/nimg.2002.1280.CrossRefGoogle ScholarPubMed
Cadar, D. (2018). Cognitive ageing. In: Geriatrics Health (pp 4965). InTech. https://doi.org.10.5772/intechopen.79119 Google Scholar
Cervenkova, M., Heissler, R. and Kopecek, M. (2020). Stability of memory SuperAgers over 3 years. Psych Journal, 9(1), 147149. https://doi.org.10.1002/pchj.313.CrossRefGoogle ScholarPubMed
Cole, J. H. et al. (2019). Brain age and other bodily “ages”: implications for neuropsychiatry. Molecular Psychiatry, 24, 266281. https://doi.org/10.1038/s41380-018-0098-1.CrossRefGoogle ScholarPubMed
Cook, A. H. et al. (2017). Rates of cortical atrophy in adults 80 years and older with superior vs average episodic memory. JAMA, 317(13), 13731375. https://doi.org/10.1001/jama.2017.0627.CrossRefGoogle ScholarPubMed
Cook Maher, A. et al. (2017). Psychological well-being in elderly adults with extraordinary episodic memory. PLoS One, 12(10), e0186413. https://doi.org/10.1371/journal.pone.0186413.CrossRefGoogle ScholarPubMed
Dang, C. et al. (2019). Superior memory reduces 8-year risk of mild cognitive impairment and dementia but not amyloid β-associated cognitive decline in older adults. Archives of Clinical Neuropsychology, 34, 585598.CrossRefGoogle Scholar
de Godoy, L. L. et al. (2021). The brain metabolic signature in superagers using in vivo (1)H-MRS: a pilot study. AJNR. American Journal of Neuroradiology, 42, 17901797. https://doi.org/10.3174/ajnr.A7262.Google ScholarPubMed
Dekhtyar, M. et al. (2017). Neuroimaging markers associated with maintenance of optimal memory performance in late-life. Neuropsychologia, 100, 164170. https://doi.org/10.1016/j.neuropsychologia.2017.04.037.CrossRefGoogle ScholarPubMed
Delis, D. et al. (2004). Reliability and validity of the Delis-Kaplan Executive Function System: an update. Journal of the International Neurological Society, 10, 301303.Google ScholarPubMed
Dominguez, E. N. et al. (2021). Regional cortical thickness predicts top cognitive performance in the elderly. Frontiers in Aging Neuroscience, 13, 751375. https://doi.org/10.3389/fnagi.2021.751375.CrossRefGoogle ScholarPubMed
Erzigkeit, H. et al. (2001). The Bayer-Activities of Daily Living Scale (B-ADL): results from a validation study in three European countries. Dementia and Geriatric Cognitive Disorders, 12, 348358. https://doi.org/10.1159/000051280.CrossRefGoogle ScholarPubMed
Feinstein, A. R. and Cicchetti, D. V. (1990). High agreement but low kappa: I. The problems of two paradoxes. Journal of Clinical Epidemiology, 43, 543549. https://doi.org/10.1016/0895-4356(90)90158-l.CrossRefGoogle ScholarPubMed
Fernandes, R. A. et al. (2019). The relationship between lifestyle and costs related to medicine use in adults. Arquivos Brasileiros de Cardiologia, 112, 749755. https://doi.org/10.5935/abc.20190049.Google ScholarPubMed
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle Scholar
Fortin, J.-P. et al. (2018). Harmonization of cortical thickness measurements across scanners and sites. NeuroImage, 167, 104120. https://doi.org/10.1016/j.neuroimage.2017.11.024.CrossRefGoogle ScholarPubMed
Gardener, S. L. et al. (2021). Longitudinal trajectories in cortical thickness and volume atrophy: superior cognitive performance does not protect against brain atrophy in older adults. Journal of Alzheimer’s Disease, 81, 10391052. https://doi.org/10.3233/JAD-201243.CrossRefGoogle Scholar
Gefen, T. et al. (2014). Longitudinal neuropsychological performance of cognitive SuperAgers. Journal of the American Geriatrics Society, 62, 15981600. https://doi.org/10.1111/jgs.12967.CrossRefGoogle ScholarPubMed
Gwet, K. (2010). Handbook of Inter-Rater Reliability. The Definitive Guide to Measuring the Extent of Agreement Among Raters. 2nd edition, Gaithersburg: Advanced Analytics.Google Scholar
Gwet, K. L. (2019). irrCAC: computing chance - Corrected Agreement Coefficients (CAC). R package version 1.0. Available at: https://CRAN.R-project.org/package=irrCAC.Google Scholar
Harrison, T. M. et al. (2012). Superior memory and higher cortical volumes in unusually successful cognitive aging. Journal of the International Neuropsychological Society: JINS, 18, 10811085. https://doi.org/10.1017/S1355617712000847.CrossRefGoogle ScholarPubMed
Harrison, T. M. et al. (2018). Brain morphology, cognition, and β-amyloid in older adults with superior memory performance. Neurobiology of Aging, 67, 162170. https://doi.org/10.1016/j.neurobiolaging.2018.03.024.CrossRefGoogle ScholarPubMed
Huentelman, M. J. et al. (2018). Associations of MAP2K3 gene variants with superior memory in SuperAgers. Frontiers in Aging Neuroscience, 10, 155. https://doi.org/10.3389/fnagi.2018.00155.CrossRefGoogle ScholarPubMed
IBM Corp (2021). Armonk, NY: IBM Corp (IBM SPSS Statistics for Windows).Google Scholar
Janeczek, M. et al. (2018). Variations in acetylcholinesterase activity within human cortical pyramidal neurons across age and cognitive trajectories. Cerebral Cortex, 28(4), 13291337. https://doi.org/10.1093/cercor/bhx047.CrossRefGoogle ScholarPubMed
Kaplan, E., Goodglass, H. and Weintraub, S. (2001). The Boston Naming Test. Baltimore: Lippincott Williams & Wilkins.Google Scholar
Karpouzian-Rogers, T. et al. (2022). NIH toolbox(®) episodic memory measure differentiates older adults with exceptional memory capacity from those with average-for-age cognition. Journal of the International Neuropsychological Society, 1–5. https://doi.org/10.1017/S135561772200008X.CrossRefGoogle Scholar
Katsumi, Y. et al. (2022). Structural integrity of the anterior mid-cingulate cortex contributes to resilience to delirium in SuperAging. Brain Communications, 4, fcac163. https://doi.org/10.1093/braincomms/fcac163.CrossRefGoogle ScholarPubMed
Kim, B. R. et al. (2020). White matter integrity is associated with the amount of physical activity in older adults with super-aging. Frontiers in Aging Neuroscience, 12, 549983. https://doi.org/10.3389/fnagi.2020.549983.CrossRefGoogle ScholarPubMed
Koncz, R. et al. (2018). Incidental findings on cerebral MRI in twins: the Older Australian Twins Study. Brain Imaging and Behavior, 12, 860869. https://doi.org/10.1007/s11682-017-9747-2.CrossRefGoogle ScholarPubMed
Lin, F. et al. (2017). The cingulate cortex of older adults with excellent memory capacity. Cortex, 86, 8392. https://doi.org/10.1016/j.cortex.2016.11.009.CrossRefGoogle ScholarPubMed
Livingston, G. et al. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet (London, England), 396, 413446. https://doi.org/10.1016/S0140-6736(20)30367-6.CrossRefGoogle ScholarPubMed
Low, A. et al. (2022). Modifiable and non-modifiable risk factors of dementia on midlife cerebral small vessel disease in cognitively healthy middle-aged adults: the PREVENT-Dementia study. Alzheimer’s Research & Rherapy, 14, 154. https://doi.org/10.1186/s13195-022-01095-4.Google ScholarPubMed
Maccora, J., Peters, R. and Anstey, K. J. (2020). Gender differences in superior-memory SuperAgers and associated factors in an Australian cohort. Journal of Applied Gerontology: the Official Journal of the Southern Gerontological Society, 40, 733464820902943. https://doi.org/10.1177/0733464820902943.Google Scholar
Mapstone, M et al. (2017). What success can teach us about failure: the plasma metabolome of older adults with superior memory and lessons for Alzheimer’s disease. Neurobiology of Aging, 51, 148155.CrossRefGoogle ScholarPubMed
Mathuranath, P. et al. (2000). A brief cognitive test battery to differentiate Alzheimers disease and frontotemporal dementia. Neurology, 55, 16131620.CrossRefGoogle ScholarPubMed
Nassif, C. et al. (2022). Integrity of neuronal size in the entorhinal cortex is a biological substrate of exceptional cognitive aging. Journal of Neuroscience, 42(45), 85878594. https://doi.org/10.1523/JNEUROSCI.0679-22.2022.CrossRefGoogle ScholarPubMed
Nelson, H. and Willison, J. (1991). National Adult Reading Test (NART): Test Manual. 2nd edition, Windsor: NFER Nelson.Google Scholar
R Core Team. (2023). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: www.R-project.org/.Google Scholar
Reitan, R. and Wolfson, D. (1993). The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation. 2nd edition, Tucson, AZ: Neuropsychology Press.Google Scholar
Rey, A. (1964). L’Examen Clinique en Psychologie. Paris: Presses Universitaires de France.Google Scholar
Ricker, J. and Axelrod, B. (1994). Analysis of an oral paradigm for the Trail Making Test. Assessment, 1, 5155.CrossRefGoogle ScholarPubMed
Rogalski, E. et al. (2019). Cognitive trajectories and spectrum of neuropathology in SuperAgers: the first 10 cases. Hippocampus, 29, 458467. https://doi.org/10.1002/hipo.22828.CrossRefGoogle ScholarPubMed
Rogalski, E. J. et al. (2013). Youthful memory capacity in old brains: anatomic and genetic clues from the Northwestern SuperAging Project. Journal of Cognitive Neuroscience, 25, 2936. https://doi.org/10.1162/jocn_a_00300.CrossRefGoogle ScholarPubMed
Rubin, D. (2004). Multiple imputation for nonresponse in surveys. New York: Wiley.Google Scholar
Sachdev, P. S. et al. (2009). A comprehensive neuropsychiatric study of elderly twins: the Older Australian Twins Study. Twin Research and Human Genetics: the Official Journal of the International Society for Twin Studies, 12, 573582. https://doi.org/10.1375/twin.12.6.573.CrossRefGoogle ScholarPubMed
Sachdev, P. S. et al. (2010). The Sydney Memory and Ageing Study (MAS): methodology and baseline medical and neuropsychiatric characteristics of an elderly epidemiological non-demented cohort of Australians aged 70-90 years. International Psychogeriatrics, 22, 12481264. https://doi.org/10.1017/S1041610210001067.CrossRefGoogle ScholarPubMed
Sachdev, P. S. et al. (2013). The Sydney Centenarian Study: methodology and profile of centenarians and near-centenarians. International Psychogeriatrics, 25, 9931005. https://doi.org/10.1017/S1041610213000197.CrossRefGoogle ScholarPubMed
Saint Martin, M. et al. (2017). Long-lasting active lifestyle and successful cognitive aging in a healthy elderly population: the PROOF cohort. Revue Neurologique, 173, 637644. https://doi.org/10.1016/j.neurol.2017.05.009.CrossRefGoogle Scholar
Spreen, O. and Benton, A. (1969). Neurosensory Centre Comprehensive Examination for Aphasia Manual (NCCEA). Victoria: University of Victoria.Google Scholar
Sun, F. W. et al. (2016). Youthful brains in older adults: preserved neuroanatomy in the default mode and salience networks contributes to youthful memory in superaging. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 36, 96599668. https://doi.org/10.1523/JNEUROSCI.1492-16.2016.CrossRefGoogle ScholarPubMed
Teater, B. and Chonody, J. M. (2020). What attributes of successful aging are important to older adults? The development of a multidimensional definition of successful aging. Social Work in Health Care, 59, 161179. https://doi.org/10.1080/00981389.2020.1731049.CrossRefGoogle ScholarPubMed
Tombaugh, T. N. (2004). Trail Making Test A and B: normative data stratified by age and education. Archives of Clinical Neuropsychology: the Official Journal of the National Academy of Neuropsychologists, 19, 203214. https://doi.org/10.1016/S0887-6177(03)00039-8.CrossRefGoogle Scholar
Wechsler, D. (1981). WAIS-R Manual. New York: The Psychological Corporation.Google Scholar
Wechsler, D. (1997a). Wechsler Adult Intelligence Scale-3rd Edition (WAIS-3®). San Antonio: Harcourt Assessment.Google Scholar
Wechsler, D. (1997b). Wechsler Adult Intelligence Scale-III. San Antonio: The Psychological Corporation.Google Scholar
Yu, J. et al. (2020). Super-cognition in aging: cognitive profiles and associated lifestyle factors. Applied Neuropsychology: Adult, 27, 497503. https://doi.org/10.1080/23279095.2019.1570928.CrossRefGoogle ScholarPubMed
Zhang, J., Andreano, J. M., Dickerson, B. C., Touroutoglou, A., Barrett, L. F. (2020). Stronger functional connectivity in the default mode and salience networks is associated with youthful memory in superaging. Cereb Cortex, 30(1), 7284. https://doi.org/10.1093/cercor/bhz071.CrossRefGoogle ScholarPubMed
Supplementary material: File

Powell et al. supplementary material
Download undefined(File)
File 48.4 KB