Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T19:24:30.923Z Has data issue: false hasContentIssue false

Grey matter volume predicts improvement in geriatric depression in response to Tai Chi compared to Health Education

Published online by Cambridge University Press:  06 December 2023

Beatrix Krause-Sorio
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
Prabha Siddarth
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
Michaela M. Milillo
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
Lisa Kilpatrick
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
Linda Ercoli
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
Katherine L. Narr
Affiliation:
Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
Helen Lavretsky*
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
*
Correspondence should be addressed to: Helen Lavretsky, Department of Psychiatry, Semel Institute for Neuroscience and Behavior, 760 Westwood Plaza, University of California Los Angeles, Los Angeles, CA, 90024, USA. Phone: +1 (310) 794 4619. Email: hlavretsky@mednet.ucla.edu

Abstract

Objectives:

Geriatric depression (GD) is associated with cognitive impairment and brain atrophy. Tai-Chi-Chih (TCC) is a promising adjunct treatment to antidepressants. We previously found beneficial effects of TCC on resting state connectivity in GD. We now tested the effect of TCC on gray matter volume (GMV) change and the association between baseline GMV and clinical outcome.

Participants:

Forty-nine participants with GD (>=60 y) underwent antidepressant treatment (38 women).

Intervention:

Participants completed 3 months of TCC (N = 26) or health and wellness education control (HEW; N = 23).

Measurements:

Depression and anxiety symptoms and MRI scans were acquired at baseline and 3-month follow-up. General linear models (GLMs) tested group-by-time interactions on clinical scores. Freesurfer 6.0 was used to process T1-weighted images and to perform voxel-wise whole-brain GLMs of group on symmetrized percent GMV change, and on the baseline GMV and symptom change association, controlling for baseline symptom severity. Age and sex served as covariates in all models.

Results:

There were no group differences in baseline demographics or clinical scores, symptom change from baseline to follow-up, or treatment-related GMV change. However, whole-brain analysis revealed that lower baseline GMV in several clusters in the TCC, but not the HEW group, was associated with larger improvements in anxiety. This was similar for right precuneus GMV and depressive symptoms.

Conclusions:

While we observed no effect on GMV due to the interventions, baseline regional GMV predicted symptom improvements with TCC but not HEW. Longer trials are needed to investigate the long-term effects of TCC on clinical symptoms and neuroplasticity.

Type
Original Research Article
Copyright
© International Psychogeriatric Association 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexopoulos, G. S. (2019). Mechanisms and treatment of late-life depression. Translational Psychiatry, 9, 188.CrossRefGoogle ScholarPubMed
Andreescu, C. et al. (2008). Gray matter changes in late life depression--a structural MRI analysis. Neuropsychopharmacology, 33, 25662572.CrossRefGoogle ScholarPubMed
Carpenter, C. R. et al. (2014). Predicting geriatric falls following an episode of emergency department care: a systematic review. Academic Emergency Medicine: Official Journal of the Society for Academic Emergency Medicine, 21, 10691082.CrossRefGoogle ScholarPubMed
Chen, Y. M., Huang, X. M., Thompson, R., Zhao, Y.-B. (2011). Clinical features and efficacy of escitalopram treatment for geriatric depression. The Journal of International Medical Research, 39, 19461953.CrossRefGoogle ScholarPubMed
Droppa, K. et al. (2017). Association between change in brain gray matter volume, cognition, and depression severity: pre- and post- antidepressant pharmacotherapy for late-life depression. Journal of Psychiatric Research, 95, 129134.CrossRefGoogle ScholarPubMed
Du, M. et al. (2014). Brain grey matter volume alterations in late-life depression. Journal of Psychiatry and Neuroscience, 39, 397406.CrossRefGoogle ScholarPubMed
Espinoza Oyarce, D. A., Shaw, M. E., Alateeq, K., Cherbuin, N. (2020). Volumetric brain differences in clinical depression in association with anxiety: a systematic review with meta-analysis. Journal of Psychiatry and Neuroscience, 45, 406429.CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle Scholar
Gazibara, T. et al. (2017). Falls, risk factors and fear of falling among persons older than 65 years of age. Psychogeriatrics: The Official Journal of the Japanese Psychogeriatric Society, 17, 215223.CrossRefGoogle ScholarPubMed
Gunning, F. M. et al. (2009). Anterior cingulate cortical volumes and treatment remission of geriatric depression. International Journal of Geriatric Psychiatry, 24, 829836.CrossRefGoogle ScholarPubMed
Hamilton, M. (1959). The assessment of anxiety states by rating. British Journal of Medical Psychology, 32, 5055.CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery & Psychiatry, 23, 5662.CrossRefGoogle ScholarPubMed
Hamilton, M. (1967). Development of a rating scale for primary depressive illness. British Journal of Social and Clinical Psychology, 6, 278296.CrossRefGoogle ScholarPubMed
Hosseini, L., Kargozar, E., Sharifi, F., Negarandeh, R., Memari, A.-H., Navab, E. (2018). Tai Chi Chuan can improve balance and reduce fear of falling in community dwelling older adults: a randomized control trial. Journal of Exercise Rehabilitation, 14, 10241031.CrossRefGoogle ScholarPubMed
Ismail, Z., Fischer, C. and McCall, W. V. (2013). What characterizes late-life depression? Psychiatric Clinics of North America, 36, 483496.CrossRefGoogle ScholarPubMed
Kilpatrick, L. A. et al. (2022). Impact of Tai Chi as an adjunct treatment on brain connectivity in geriatric depression. Journal of Affective Disorders, 315, 16.CrossRefGoogle ScholarPubMed
Kim, Y. K. and Han, K. M. (2021). Neural substrates for late-life depression: a selective review of structural neuroimaging studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 104, 110010.CrossRefGoogle ScholarPubMed
Kong, J., Wilson, G., Park, J., Pereira, K., Walpole, C., Yeung, A. (2019). Treating depression with Tai Chi: state of the art and future perspectives. Frontiers in Psychiatry, 10, 237237.CrossRefGoogle ScholarPubMed
Krause-Sorio, B. et al. (2019). Cortical thickness increases with levomilnacipran treatment in a pilot randomised double-blind placebo-controlled trial in late-life depression. Psychogeriatrics: The Official Journal of the Japanese Psychogeriatric Society, 20, 140148.CrossRefGoogle Scholar
Krause-Sorio, B. et al. (2020). Combined treatment with escitalopram and memantine increases gray matter volume and cortical thickness compared to escitalopram and placebo in a pilot study of geriatric depression. Journal of Affective Disorders, 274, 464470.CrossRefGoogle Scholar
Krause-Sorio, B. et al. (2022). Yoga prevents gray matter atrophy in women at risk for Alzheimer’s disease: a randomized controlled trial. J Alzheimers Dis, 87, 569581.CrossRefGoogle ScholarPubMed
Krause-Sorio, B. et al. (2023). Regional gray matter volume correlates with anxiety, apathy and resilience in geriatric depression. International Psychogeriatrics, 29, 19.CrossRefGoogle Scholar
Laird, K. T. et al. (2019). Anxiety symptoms are associated with smaller insular and orbitofrontal cortex volumes in late-life depression. Journal of Affective Disorders, 256, 282287.CrossRefGoogle ScholarPubMed
Lavretsky, H. et al. (2011). Complementary use of tai chi chih augments escitalopram treatment of geriatric depression: a randomized controlled trial. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 19, 839850.CrossRefGoogle ScholarPubMed
Lavretsky, H. et al. (2022). A randomized controlled trial of Tai Chi Chih or health education for geriatric depression. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 30, 392403.CrossRefGoogle ScholarPubMed
Lavretsky, H., Ballmaier, M., Pham, D., Toga, A., Kumar, A. (2007). Neuroanatomical characteristics of geriatric apathy and depression: a magnetic resonance imaging study. The American Journal of Geriatric Psychiatry, 15, 386394.CrossRefGoogle ScholarPubMed
Lavretsky, H., Roybal, D. J., Ballmaier, M., Toga, A. W., Kumar, A. (2005). Antidepressant exposure may protect against decrement in frontal gray matter volumes in geriatric depression. The Journal of Clinical Psychiatry, 66, 964967.CrossRefGoogle ScholarPubMed
Mackin, R. S. et al. (2013). Patterns of reduced cortical thickness in late-life depression and relationship to psychotherapeutic response. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 21, 794802.CrossRefGoogle ScholarPubMed
Montgomery, G. K., Reynolds, N. C. Jr. and Warren, R. M. (1985). Qualitative assessment of Parkinson’s disease: study of reliability and data reduction with an abbreviated Columbia Scale. Clinical Neuropharmacology, 8, 8392.CrossRefGoogle ScholarPubMed
Nelson, J. C., Delucchi, K. and Schneider, L. S. (2008). Efficacy of second generation antidepressants in late-life depression: a meta-analysis of the evidence. The American Journal of Geriatric Psychiatry, 16, 558567.CrossRefGoogle ScholarPubMed
Pimontel, M. A. et al. (2020). Cortical thickness of the salience network and change in apathy following antidepressant treatment for late-life depression. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 29, 241248.CrossRefGoogle ScholarPubMed
Potvin, O. et al. (2015). Gray matter characteristics associated with trait anxiety in older adults are moderated by depression. International Psychogeriatrics, 27, 18131824.CrossRefGoogle ScholarPubMed
Ramachandran, V. S., Krause, B. and Case, L. K. (2011). The phantom head. Perception, 40, 367370.CrossRefGoogle ScholarPubMed
Reuter, M. and Fischl, B. (2011). Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage, 57, 1921.CrossRefGoogle ScholarPubMed
Reuter, M., Schmansky, N. J., Rosas, H. D., Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61, 14021418.CrossRefGoogle ScholarPubMed
Sexton, C. E., Mackay, C. E. and Ebmeier, K. P. (2013). A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 21, 184195.CrossRefGoogle ScholarPubMed
Stone, J. F. (1996). Tai-Chi-Chih! Joy Through Movement. Boston, MA: Good Karma Publishing.Google Scholar
Szymkowicz, S. M. et al. (2016). Depressive symptom severity is associated with increased cortical thickness in older adults. International Journal of Geriatric Psychiatry, 31, 325333.CrossRefGoogle ScholarPubMed
Takamiya, A. et al. (2021). Lower regional gray matter volume in the absence of higher cortical amyloid burden in late-life depression. Scientific Reports, 11, 15981.CrossRefGoogle ScholarPubMed
Tao, J. et al. (2017). Tai Chi Chuan and Baduanjin practice modulates functional connectivity of the cognitive control network in older adults. Scientific Reports, 7, 41581.CrossRefGoogle ScholarPubMed
Tunvirachaisakul, C. et al. (2018). Predictors of treatment outcome in depression in later life: a systematic review and meta-analysis. Journal of Affective Disorders, 227, 164182.CrossRefGoogle ScholarPubMed
WHO (2007). WHO Global Report on Falls Prevention in Older Age. France: WHO Library Cataloguing-in-Publication Data.Google Scholar
Wilkinson, G. S. and Robertson, G. J. (2006). Wide Range Achievement Test Professional Manual, 4. Bloomington, MN: NCS Pearson, Inc.Google Scholar
Yeung, A. S. et al. (2017). A pilot, randomized controlled study of Tai Chi with passive and active controls in the treatment of depressed Chinese Americans. The Journal of Clinical Psychiatry, 78, e522e528.CrossRefGoogle ScholarPubMed
Yıldırım, P., Ofluoglu, D., Aydogan, S., Akyuz, G. (2016). Tai Chi vs. combined exercise prescription: a comparison of their effects on factors related to falls. Journal of Back and Musculoskeletal Rehabilitation, 29, 493501.CrossRefGoogle ScholarPubMed