Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
CrossRef.
Mitov, Kosto V.
2021.
A critical branching process with immigration in varying environments.
Statistics & Probability Letters,
Vol. 168,
Issue. ,
p.
108928.
Le Page, Emile
Peigné, Marc
and
Pham, Da Cam
2021.
Central limit theorem for a critical multitype branching process in random environments.
Tunisian Journal of Mathematics,
Vol. 3,
Issue. 4,
p.
801.
Cardona-Tobón, Natalia
and
Palau, Sandra
2021.
Yaglom’s limit for critical Galton–Watson processes in varying environment: A probabilistic approach.
Bernoulli,
Vol. 27,
Issue. 3,
Kersting, Götz
2022.
On the Genealogical Structure of Critical Branching Processes in a Varying Environment.
Proceedings of the Steklov Institute of Mathematics,
Vol. 316,
Issue. 1,
p.
209.
Wang, Hua-Ming
and
Yao, Huizi
2022.
Two-type linear-fractional branching processes in varying environments with asymptotically constant mean matrices.
Journal of Applied Probability,
Vol. 59,
Issue. 1,
p.
224.
Grama, Ion
Lauvergnat, Ronan
and
Le Page, Émile
2022.
Limit theorems for critical branching processes in a finite-state-space Markovian environment.
Advances in Applied Probability,
Vol. 54,
Issue. 1,
p.
111.
Керстинг, Гетц Дитрих
and
Kersting, Gotz Dietrich
2022.
О генеалогической структуре критических ветвящихся процессов в меняющейся среде.
Труды Математического института имени В. А. Стеклова,
Vol. 316,
Issue. ,
p.
222.
Тесемников, Павел Игоревич
Tesemnikov, Pavel Igorevich
Фосс, Сергей Георгиевич
and
Foss, Sergei Georgievich
2022.
Вероятность достижения удаляющейся границы ветвящимся случайным блужданием с затуханием ветвления и тяжелым хвостом распределения скачков.
Труды Математического института имени В. А. Стеклова,
Vol. 316,
Issue. ,
p.
336.
Kersting, Götz
and
Minuesa, Carmen
2022.
Defective Galton-Watson processes in a varying environment.
Bernoulli,
Vol. 28,
Issue. 2,
Tesemnivkov, P. I.
and
Foss, S. G.
2022.
The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution.
Proceedings of the Steklov Institute of Mathematics,
Vol. 316,
Issue. 1,
p.
318.