Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-28T13:59:45.341Z Has data issue: false hasContentIssue false

Chase–escape in dynamic device-to-device networks

Published online by Cambridge University Press:  07 August 2023

Elie Cali*
Affiliation:
Orange S.A.
Alexander Hinsen*
Affiliation:
Weierstrass Institute Berlin
Benedikt Jahnel*
Affiliation:
Weierstrass Institute Berlin & Technische Universität Braunschweig
Jean-Philippe Wary*
Affiliation:
Orange S.A.
*
*Postal address: Orange Labs, 44 Avenue de la République, 92320 Châtillon, France.
***Postal address: Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany.
***Postal address: Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany.
*Postal address: Orange Labs, 44 Avenue de la République, 92320 Châtillon, France.

Abstract

We feature results on global survival and extinction of an infection in a multi-layer network of mobile agents. Expanding on a model first presented in Cali et al. (2022), we consider an urban environment, represented by line segments in the plane, in which agents move according to a random waypoint model based on a Poisson point process. Whenever two agents are at sufficiently close proximity for a sufficiently long time the infection can be transmitted and then propagates into the system according to the same rule starting from a typical device. Inspired by wireless network architectures, the network is additionally equipped with a second class of agents able to transmit a patch to neighboring infected agents that in turn can further distribute the patch, leading to chase–escape dynamics. We give conditions for parameter configurations that guarantee existence and absence of global survival as well as an in-and-out of the survival regime, depending on the speed of the devices. We also provide complementary results for the setting in which the chase–escape dynamics is defined as an independent process on the connectivity graph. The proofs mainly rest on percolation arguments via discretization and multiscale analysis.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auffinger, A., Damron, M. and Hanson, J. (2017). 50 Years of First-Passage Percolation (University Lect. Ser. 68). American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
Baccelli, F. and Błaszczyszyn, B. (2010). Stochastic Geometry and Wireless Networks: Volume I Theory. Now Publishers Inc., Delft.Google Scholar
Baccelli, F. and Błaszczyszyn, B. (2010). Stochastic Geometry and Wireless Networks: Volume II Application. Now Publishers Inc., Delft.Google Scholar
Beckman, E., Cook, K., Eikmeier, N., Hernandez-Torres, S. and Junge, M. (2021). Chase–escape with death on trees. Ann. Prob. 49, 25302547.CrossRefGoogle Scholar
Benomar, Z., Ghribi, C., Cali, E., Hinsen, A. and Jahnel, B. (2022). Agent-based modeling and simulation for malware spreading in D2D networks. In Proc. 21st Int. Conf. Autonomous Agents and Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, pp. 91–99.Google Scholar
Benomar, Z., Ghribi, C., Cali, E., Hinsen, A., Jahnel, B. and Wary, J.-P. (2022). Multi-agent simulations for virus propagation in D2D 5G+ networks. WIAS preprint 2953.Google Scholar
Bernstein, E., Hamblen, C., Junge, M. and Reeves, L. (2022). Chase–escape on the configuration model. Electron. Commun. Prob. 27, 114.CrossRefGoogle Scholar
Bettstetter, C., Hartenstein, H. and Pérez-Costa, X. (2004). Stochastic properties of the random waypoint mobility model. Wireless Networks 10, 555567.CrossRefGoogle Scholar
Bhamidi, S., Nam, D., Nguyen, O. and Sly, A. (2021). Survival and extinction of epidemics on random graphs with general degree. Ann. Prob. 49, 244286.CrossRefGoogle Scholar
Błaszczyszyn, B., Haenggi, M., Keeler, P. and Mukherjee, S. (2018). Stochastic Geometry Analysis of Cellular Networks. Cambridge University Press.CrossRefGoogle Scholar
Cali, E., Hinsen, A., Jahnel, B. and Wary, J.-P. (2022). Connectivity in mobile device-to-device networks in urban environments. IEEE Trans. Inf. Theory, doi: 10.1109/TIT.2023.3298278.CrossRefGoogle Scholar
Coletti, C. F., de Lima, L. R., Hinsen, A., Jahnel, B. and Valesin, D. (2021). Limiting shape for first-passage percolation models on random geometric graphs. J. Appl. Prob., doi: 10.1017/jpr.2023.5.Google Scholar
Courtat, T. (2012). Promenade dans les cartes de villes-phénoménologie mathématique et physique de la ville-une approche géométrique. PhD thesis, Université Paris-Diderot.Google Scholar
Dousse, O., Franceschetti, M., Macris, N., Meester, R. and Thiran, P. (2006). Percolation in the signal to interference ratio graph. J. Appl. Prob. 43, 552562.CrossRefGoogle Scholar
Durrett, R., Junge, M. and Tang, S. (2020). Coexistence in chase–escape. Electron. Commun. Prob. 25, 114.CrossRefGoogle Scholar
Franceschetti, M. and Meester, R. (2008). Random Networks for Communication. Cambridge University Press.CrossRefGoogle Scholar
Gall, Q., Błaszczyszyn, B., Cali, E. and En-Najjary, T. (2021). Continuum line-of-sight percolation on Poisson–Voronoi tessellations. Adv. Appl. Prob. 53, 510–536.CrossRefGoogle Scholar
Gilbert, E. N. (1961). Random plane networks. J. Soc. Indust. Appl. Math. 9, 533543.CrossRefGoogle Scholar
Gouéré, J.-B. (2008). Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Prob. 36, 12091220.CrossRefGoogle Scholar
Haenggi, M. (2012). Stochastic Geometry for Wireless Networks. Cambridge University Press.CrossRefGoogle Scholar
Hernandez-Torres, S., Junge, M., Ray, N. and Ray, N. (2022). Distance-dependent chase–escape on trees. Preprint, arXiv:2209.09876.Google Scholar
Hinsen, A., Jahnel, B., Cali, E. and Wary, J.-P. (2020). Malware propagation in urban D2D networks. In Proc. 18th Int. Symp. Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT). IEEE, Piscataway, NY.Google Scholar
Hinsen, A., Jahnel, B., Cali, E. and Wary, J.-P. (2020). Phase transitions for chase–escape models on Poisson–Gilbert graphs. Electron. Commun. Prob. 25, 114.CrossRefGoogle Scholar
Hirsch, C., Jahnel, B. and Cali, E. (2019). Continuum percolation for Cox point processes. Stoch. Process. Appl. 129, 39413966.CrossRefGoogle Scholar
Hirsch, C., Jahnel, B. and Muirhead, S. (2022). Sharp phase transition for Cox percolation. Electron. Commun. Prob. 27, 113.CrossRefGoogle Scholar
Jahnel, B. and König, W. (2020). Probabilistic Methods in Telecommunications. Birkhäuser, Basel.CrossRefGoogle Scholar
Jahnel, B. and Tóbiás, A. (2020). Exponential moments for planar tessellations. J. Statist. Phys. 179, 90109.CrossRefGoogle Scholar
Jahnel, B. and Tóbiás, A. (2022). SINR percolation for Cox point processes with random powers. Adv. Appl. Prob. 54, 227253.CrossRefGoogle Scholar
Jahnel, B., Tóbiás, A. and Cali, E. (2022). Phase transitions for the Boolean model of continuum percolation for Cox point processes. Brazilian J. Prob. Statist. 36, 2044.CrossRefGoogle Scholar
Kesten, H. (2003). First-passage percolation. In From Classical to Modern Probability, eds P. Picco and J. San Martin. Springer, Berlin, pp. 93–143.CrossRefGoogle Scholar
Lee, S. (1997). The central limit theorem for Euclidean minimal spanning trees I. Ann. Appl. Prob. 7, 9961020.CrossRefGoogle Scholar
Liggett, T. M. (1985). Interacting Particle Systems. Springer, Berlin.CrossRefGoogle Scholar
Liggett, T. M. (2013). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin.Google Scholar
Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product measures. Ann. Prob. 25, 7195.CrossRefGoogle Scholar
Ménard, L. and Singh, A. (2016). Percolation by cumulative merging and phase transition for the contact process on random graphs. Annales Scientifiques de l’École Normale Supérieure 49, 11891238.CrossRefGoogle Scholar
Nguyen, O. and Sly, A. (2022). Subcritical epidemics on random graphs. Preprint, arXiv:2205.03551.Google Scholar
Penrose, M. and Yukich, J. (2002). Limit theory for random sequential packing and deposition. Ann. Appl. Prob. 12, 272301.CrossRefGoogle Scholar
Penrose, M. and Yukich, J. (2003). Weak laws of large numbers in geometric probability. Ann. Appl. Prob. 13, 277303.CrossRefGoogle Scholar
Tang, S., Kordzakhia, G. and Lalley, S. P. (2018). Phase transition for the chase–escape model on 2D lattices. Preprint, arXiv:1807.08387.Google Scholar
Tóbiás, A. (2020). Signal to interference ratio percolation for Cox point processes. Lat. Amer. J. Prob. Math. Statist. 17, 273308.CrossRefGoogle Scholar