[1]Alonso-Gutiérrez, D., Prochno, J. and Thäle, C. (2018). Large deviations for high-dimensional random projections of ℓ_{p}^{n} balls. Adv. Appl. Math. 99, 1–35.

[2]Ambrosio, L., Gigli, N. and Savaré, G. (2008). Gradient flows in metric spaces and in the space of probability measures (Lectures Math. ETH Z\"urich), 2nd edn. Birkhäuser, Basel.

[3]Barthe, F., Guédon, O., Mendelson, S. and Naor, A. (2005). A probabilistic approach to the geometry of the ℓ_{p}^{n}-ball. Ann. Prob. 33, 480–513.

[4]Ben Arous, G., Dembo, A. and Guionnet, A. (2001). Aging of spherical spin glasses. Prob. Theory Relat. Fields 120, 1–67.

[5]Ben Arous, G. and Guionnet, A. (1997). Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Prob. Theory Relat. Fields 108, 517–542.

[6]Bertini, L.*et al.* (2015). Macroscopic fluctuation theory. Rev. Modern Phys. 87, 593–636.

[7]Billingsley, P. (1999). Convergence of Probability Measures, 2nd edn. John Wiley, New York.

[8]Boyd, S. and Vandenberghe, L. (2004). Convex Optimization, Cambridge University Press.

[9]Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory, 2nd edn. John Wiley, Hoboken, NJ.

[10]Csiszár, I. (1984). Sanov property, generalized *I*-projection and a conditional limit theorem. Ann. Prob. 12, 768–793.

[11]Dellacherie, C. and Meyer, P.-A. (2011). Probabilities and Potential, C (North-Holland Math. Studies 151). North-Holland, Amsterdam.

[12]Dembo, A. and Shao, Q.-M. (1998). Self-normalized large deviations in vector spaces. In High Dimensional Probability (Progr. Prob. 43). Birkhäuser, Basel, pp. 27–32.

[13]Dembo, A. and Zeitouni, O. (1996). Refinements of the Gibbs conditioning principle. Prob. Theory Relat. Fields 104, 1–14.

[14]Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications (Appl. Math. 38), 2nd edn. Springer, Berlin.

[15]Diaconis, P. and Freedman, D. (1987). A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincaré Statist. 23, 397–423.

[16]Dupuis, P. and Ellis, R. S. (1997). A Weak Convergence Approach to the Theory of Large Deviations. John Wiley, New York.

[17]Ellis, R. S. (2006). Entropy, Large Deviations, and Statistical Mechanics. Springer, Berlin.

[18]Gantert, N., Kim, S. S. and Ramanan, K. (2006). Cramér's theorem is atypical. In Advances in the Mathematical Sciences (Assoc. Women Math. Ser. 6). Springer, Cham, pp. 253–270.

[19]Gantert, N., Kim, S. S. and Ramanan, K. (2017). Large deviations for random projections of ℓ^{p} balls. Ann. Prob. 45, 4419–4476.

[20]Kabluchko, Z., Prochno, J. and Thäle, C. (2017). High-dimensional limit theorems for random vectors in $\ell_p^n$-balls. Commun. Contemp. Math. 1750092.

[21]Kim, S. S. (2017). Problems at the interface of probability and convex geometry: Random projections and constrained processes. Doctoral Thesis, Brown University.

[22]Kim, S. S. and Ramanan, K. (2018). Large deviations on the Stiefel manifold. Preprint.

[23]Klartag, B. (2007). A central limit theorem for convex sets. Invent. Math. 168, 91–131.

[24]Léonard, C. (2010). Entropic projections and dominating points. ESAIM: Prob. Statist. 14, 343–381.

[25]Léonard, C. and Najim, J. (2002). An extension of Sanov's theorem: application to the Gibbs conditioning principle. Bernoulli 8, 721–743.

[26]Lynch, J. and Sethuraman, J. (1987). Large deviations for processes with independent increments. Ann. Prob. 15, 610–627.

[27]Mogul′skii, A. A. (1991). De Finetti-type results for ℓ_{p}. Siberian Math. J. 32, 609–619.

[28]Naor, A. (2007). The surface measure and cone measure on the sphere of ℓ_{p}^{n}. Trans. Amer. Math. Soc. 359, 1045–1079.

[29]Naor, A.and Romik, D. (2003). Projecting the surface measure of the sphere of ℓ_{p}^{n}. Ann. Inst. H. Poincaré Prob. Statist. 39, 241–261.

[30]Rachev, S. T. and Rüschendorf, L. (1991). Approximate independence of distributions on spheres and their stability properties. Ann. Prob. 19, 1311–1337.

[31]Schechtman, G. and Zinn, J. (1990). On the volume of the intersection of two *L* _{p}^{n} balls. Proc. Amer. Math. Soc. 110, 217–224.

[32]Spruill, M. C. (2007). Asymptotic distribution of coordinates on high dimensional spheres. Electron. Commun. Prob. 12, 234–247.

[33]Stam, A. J. (1982). Limit theorems for uniform distributions on spheres in high-dimensional euclidean spaces. J. Appl. Prob. 19, 221–228.

[34]Stroock, D. W.and Zeitouni, O. (1991). Microcanonical distributions, Gibbs states, and the equivalence of ensembles. In Random Walks, Brownian Motion, and Interacting Particle Systems (Progr. Prob. 28). Birkhäuser, Boston, MA.

[35]Sznitman, A.-S. (1991). Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour XIXXIX—1989 (Lecture Notes Math. 1464). Springer, Berlin, pp. 165–251.

[36]Trashorras, J. (2002). Large deviations for a triangular array of exchangeable random variables. Ann. Inst. H. Poincaré Prob. Statist. 38, 649–680.

[37]Villani, C. (2009). Optimal Transport: Old and New, 338, Springer, Berlin.

[38]Wang, R., Wang, X. and Wu, L. (2010). Sanov’s theorem in the Wasserstein distance: a necessary and sufficient condition. Statist. Prob. Lett. 80, 505–512.