Skip to main content

The Explicit Laplace Transform for the Wishart Process

  • Alessandro Gnoatto (a1) and Martino Grasselli (a2)

We derive the explicit formula for the joint Laplace transform of the Wishart process and its time integral, which extends the original approach of Bru (1991). We compare our methodology with the alternative results given by the variation-of-constants method, the linearization of the matrix Riccati ordinary differential equation, and the Runge-Kutta algorithm. The new formula turns out to be fast and accurate.

Corresponding author
Postal address: Mathematisches Institut, LMU München, Theresienstrasse 39, D-80333 München, Germany. Email address:
∗∗ Postal address: Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy. Email address:
Hide All
[1] Ahdida, A. and Alfonsi, A. (2013). Exact and high-order discretization schemes for Wishart processes and their affine extensions. Ann. Appl. Prob. 23, 10251073.
[2] Anderson, B. D. O. and Moore, J. B. (1971). Linear Optimal Control. Prentice-Hall, Englewood Cliffs, NJ.
[3] Barndorff-Nielsen, O. E. and Stelzer, R. (2007). Positive-definite matrix processes of finite variation. Prob. Math. Statist. 27, 343.
[4] Bäuerle, N. and Li, Z. (2013). Optimal portfolios for financial markets with Wishart volatility. J. Appl. Prob. 50, 10251043.
[5] Bru, M.-F. (1991). Wishart processes. J. Theoret. Prob. 4, 725751.
[6] Buraschi, A., Cieslak, A. and Trojani, F. (2008). Correlation risk and the term structure of interest rates. Working paper. Available at
[7] Buraschi, A., Porchia, P. and Trojani, F. (2010). Correlation risk and optimal portfolio choice. J. Finance 65, 393420.
[8] Chiarella, C., Hsiao, C.-Y. and To, T.-D. (2010). Risk premia and Wishart term structure models. Working paper. Available at
[9] Christoffersen, P., Heston, S. and Jacobs, K. (2009). The shape and term structure of the index option smirk: why multifactor stochastic volatility models work so well. Manag. Sci. 55, 19141914.
[10] Cuchiero, C. (2011). Affine and polynomial processes. , ETH Zürich.
[11] Cuchiero, C., Filipović, D., Mayerhofer, E. and Teichmann, J. (2011). Affine processes on positive semidefinite matrices. Ann. App. Prob. 21, 397463.
[12] Da Fonseca, J. and Grasselli, M. (2011). Riding on the smiles. Quant. Finance 11, 16091632.
[13] Da Fonseca, J., Grasselli, M. and Ielpo, F. (2011). Hedging (co)variance risk with variance swaps. Internat. J. Theoret. Appl. Finance 14, 899943.
[14] Da Fonseca, J., Grasselli, M. and Ielpo, F. (2014). Estimating the Wishart affine stochastic correlation model using the empirical characteristic function. Stud. Nonlinear Dynam. Econometrics 18, 253289.
[15] Da Fonseca, J., Grasselli, M. and Tebaldi, C. (2007). Option pricing when correlations are stochastic: an analytical framework. Rev. Derivatives Res. 10, 151180.
[16] Da Fonseca, J., Grasselli, M. and Tebaldi, C. (2008). A multifactor volatility Heston model. Quant. Finance 8, 591604.
[17] Donati-Martin, C., Doumerc, Y., Matsumoto, H. and Yor, M. (2004). Some properties of the Wishart processes and a matrix extension of the Hartman–Watson laws. Publ. Res. Inst. Math. Sci. 40, 13851412.
[18] Duffie, D., Filipović, D. and Schachermayer, W. (2003). Affine processes and applications in finance. Ann. Appl. Prob. 13, 9841053.
[19] Gnoatto, A. (2012). The Wishart short rate model. Internat. J. Theoret. Appl. Finance 15, 1250056.
[20] Gourieroux, C. (2006). Continuous time Wishart process for stochastic risk. Econometric Rev. 25, 177217.
[21] Gourieroux, C. and Sufana, R. (2003). Wishart quadratic term structure models. Working paper. Available at
[22] Gourieroux, C. and Sufana, R. (2010). Derivative pricing with Wishart multivariate stochastic volatility. J. Bus. Econom. Statist. 28, 438451.
[23] Gourieroux, C., Monfort, A. and Sufana, R. (2010). International money and stock market contingent claims. J. Internat. Money Finance 29, 17271751.
[24] Grasselli, M. and Tebaldi, C. (2008). Solvable affine term structure models. Math. Finance 18, 135153.
[25] Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies 6, 327343.
[26] Kang, C. and Kang, W. (2013). Transform formulae for linear functionals of affine processes and their bridges on positive semidefinite matrices. Stoch. Process. Appl. 123, 24192445.
[27] Kučera, V. (1973). A review of the matrix Riccati equation. Kybernetika 9, 4261.
[28] Leippold, M. and Trojani, F. (2010). Asset pricing with matrix Jump diffusions. Working paper. Available at
[29] Levin, J. J. (1959). On the matrix Riccati equation. Proc. Amer. Math. Soc. 10, 519524.
[30] Mayerhofer, E. (2012). Wishart processes and Wishart distributions: an affine processes point of view. CIMPA lecture notes. Available at
[31] Mayerhofer, E. (2013). On the existence of non-central Wishart distributions. J. Multivariate Anal. 114, 448456.
[32] Mayerhofer, E., Pfaffel, O. and Stelzer, R. (2011). On strong solutions for positive definite Jump diffusions. Stoch. Process. Appl. 121, 20722086.
[33] Muhle-Karbe, J., Pfaffel, O. and Stelzer, R. (2012). Option pricing in multivariate stochastic volatility models of OU type. SIAM J. Financial Math. 3, 6694.
[34] Pigorsch, C. and Stelzer, R. (2009). On the definition, stationary distribution and second order structure of positive semidefinite Ornstein–Uhlenbeck type processes. Bernoulli 15, 754773.
[35] Pitman, J. and Yor, M. (1982). A decomposition of Bessel bridges. Z. Wahrscheinlichkeitsth. 59, 425457.
[36] Quarteroni, A., Sacco, R. and Saleri, F. (2000). Numerical Mathematics (Texts Appl. Math. 37). Springer, New York.
[37] Revuz, D. and Yor, M. (1994). Continuous Martingales and Brownian Motion (Fundamental Principles Math. Sci. 293), 2nd edn. Springer, Berlin.
[38] Spreij, P. and Veerman, E. (2010). The affine transform formula for affine Jump-diffusions with a general closed convex state space. Preprint. Available at
[39] Yong, J. and Zhou, X. Y. (1999). Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Applied Probability
  • ISSN: 0021-9002
  • EISSN: 1475-6072
  • URL: /core/journals/journal-of-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed