Skip to main content
×
Home

From coin tossing to rock-paper-scissors and beyond: a log-exp gap theorem for selecting a leader

  • Michael Fuchs (a1), Hsien-Kuei Hwang (a2) and Yoshiaki Itoh (a3)
Abstract
Abstract

A class of games for finding a leader among a group of candidates is studied in detail. This class covers games based on coin tossing and rock-paper-scissors as special cases and its complexity exhibits similar stochastic behaviors: either of logarithmic mean and bounded variance or of exponential mean and exponential variance. Many applications are also discussed.

Copyright
Corresponding author
* Postal address: Department of Applied Mathematics, National Chiao Tung University, Hsinchu, 300, Taiwan. Email address: mfuchs@math.nctu.edu.tw
** Postal address: Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan.
*** Postal address: Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8562, Japan.
References
Hide All
[1] Bajaj P. N. and Mendieta G. R. (1993).An open toss problem.Internat. J. Math. Math. Sci. 16,621623.
[2] Bogoyavlensky O. I. (1988).Integrable discretizations of the KdV equation.Phys. Lett. A 134,3438.
[3] Bruss F. T. and O’Cinneide C. A. (1990).On the maximum and its uniqueness for geometric random samples.J. Appl. Prob. 27,598610.
[4] Capetanakis J. (1979).Tree algorithms for packet broadcast channels.IEEE Trans. Inf. Theory 25,505515.
[5] Chen W.-M. and Hwang H.-K. (2003).Analysis in distribution of two randomized algorithms for finding the maximum in a broadcast communication model.J. Algorithms 46,140177.
[6] Devroye L. (1992).A limit theory for random skip lists.Ann. Appl. Prob. 2,597609.
[7] Eisenberg B. (2008).On the expectation of the maximum of IID geometric random variables.Statist. Prob. Lett. 78,135143.
[8] Ewens W. J. and Grant G. R. (2010).Statistical Methods in Bioinformatics, 2nd edn.Springer,New York.
[9] Fayolle G., Flajolet P. and Hofri M. (1986).On a functional equation arising in the analysis of a protocol for a multi-access broadcast channel.Adv. Appl. Prob. 18,441472.
[10] Fill J. A., Mahmoud H. M. and Szpankowski W. (1996).On the distribution for the duration of a randomized leader election algorithm.Ann. Appl. Prob. 6,12601283.
[11] Flajolet P. and Sedgewick R. (2009).Analytic Combinatorics.Cambridge University Press.
[12] Flajolet P., Gourdon X. and Dumas P. (1995).Mellin transforms and asymptotics: harmonic sums.Theoret. Comput. Sci. 144,358.
[13] Flajolet P., Roux M. and Vallee B. (2010).Digital trees and memoryless sources: from arithmetics to analysis, (Proc. Discrete Math. Theor. Comput. Sci.), eds M. Drmota and B. Gittenberger, DMTCS,Nancy, pp.233260.
[14] Frachebourg L. and Krapivsky P. L. (1998).Fixation in a cyclic Lotka–Volterra model.J. Phys. A 31,L287L293.
[15] Fuchs M., Hwang H.-K. and Zacharovas V. (2014).An analytic approach to the asymptotic variance of trie statistics and related structures.Theoret. Comput. Sci. 527,136.
[16] Fuchs M., Hwang H.-K., Itoh Y. and Mahmoud H. M. (2014).A binomial splitting process in connection with corner parking problems.J. Appl. Prob. 51,971989.
[17] Gnedin A. V. (2010).Regeneration in random combinatorial structures.Prob. Surveys 7,105156.
[18] Hofbauer J. and Sigmund K. (1998).The Theory of Evolution and Dynamical Systems.Cambridge University Press.
[19] Hush D. R. and Wood C. (1998).Analysis of tree algorithms for RFID arbitration. In Proc. ISIT,IEEE,Cambridge, p.107.
[20] Hwang H.-K., Fuchs M. and Zacharovas V. (2010).Asymptotic variance of random symmetric digital search trees.Discrete Math. Theoret. Comput. Sci. 12,103166.
[21] Itoh Y. (1971).Boltzmann equation on some algebraic structure concerning struggle for existence.Proc. Japan Acad. 47,854858.
[22] Itoh Y. (1975).An H-theorem for a system of competing species.Proc. Japan Acad. 51,374379.
[23] Itoh Y. (1987).Integrals of a Lotka–Volterra system of odd number of variables.Prog. Theoret. Phys. 78,507510.
[24] Itoh Y., Maehara H. and Tokushige N. (2000).Oriented graphs generated by random points on a circle.J. Appl. Prob. 37,534539.
[25] Janson S. and Szpankowski W. (1997).Analysis of an asymmetric leader election algorithm.Electron. J. Comb. 4, 16 pp.
[26] Jacquet P. and Szpankowski W. (1998).Analytical depoissonization and its applications.Theoret. Comput. Sci. 201,162.
[27] Kalpathy R. and Mahmoud H. (2014).Perpetuities in fair leader election algorithms.Adv. Appl. Prob. 46,203216.
[28] Kemp A. W. (1984).Bulk buying of possibly defective items.J. Operat. Res. Soc. 35,859864.
[29] Knebel J., Krüer T., Weber M. F. and Frey E. (2013).Coexistence and survival in conservative Lotka–Volterra networks.Phys. Rev. Lett. 110,168106.
[30] Linhart S. (1995).Some thoughts on the ken game in Japan: from the viewpoint of comparative civilization studies. In Japanese Civilization in the World XI: Amusement, eds T. Umesao, B. Powell and I. Kumakura (Senri Ethnological Studies 40), pp.101124.
[31] Linhart S. (1998).Cultural History of Ken Games.Kadokawa,Tokyo (in Japanese).
[32] Lundberg B. (1955).Fatigue failure of airplane structures.J. Aeronaut. Sci. 22,349399.
[33] Maehara H. and Ueda S. (2000).On the waiting time in a Janken game.J. Appl. Prob. 37,601605.
[34] Margolin B. H. and Winokur H. S. Jr. (1967).Exact moments of the order statistics of the geometric distribution and their relation to inverse sampling and reliability of redundant systems.J. Amer. Statist. Assoc. 62,915925.
[35] Nakano K. and Olariu S. (2002).Randomized initialization protocols for radio networks. In Handbook of Wireless Networks and Mobile Computing, ed. I. Stojmenovic.John Wiley,New York.
[36] Neininger R. and Rüschendorf L. (2004).A general limit theorem for recursive algorithms and combinatorial structures.Ann. Appl. Prob. 14,378418.
[37] Obayashi T., Kishino Y., Sougawa T. and Yamashita S. (1998). Encyclopedia of Ethnic Play and Games.Taishuukan-Shoten,Tokyo (in Japanese).
[38] Prodinger H. (1993).How to select a loser.Discrete Math. 120,149159.
[39] Rego V. and Mathur A. P. (1990).Exploiting parallelism across program execution: a unification technique and its analysis.IEEE Trans. Parallel Distrib. Syst. 1,399414.
[40] rego V. and Szpankowski W. (1993).Yet another application of a binomial recurrence. Order statistics.Computing 43,401410.
[41] Sinervo B. and Lively C. M. (1996).The rock-paper-scissors game and the evolution of alternative male strategies.Nature 380,240243.
[42] Smith J. M. (1982).Evolution and the Theory of Games.Cambridge University Press.
[43] Spencer J. E. (1981).Probability, defectives and mail ordering.J. Operat. Res. Soc. 32,899906.
[44] Suzaki M. and Osaki S. (2008).Probabilistic analysis and approximate calculations for ordering Janken.IEICE Trans. Fundam. Electron., Comm. Comput. Sci. 91,393398 (in Japanese).
[45] Suzaki M. and Osaki S. (2009).A leader election algorithm by a 4-hand rock-paper-scissors type model: probabilistic analysis and asymptotic behavior.IEICE Trans. Fundam. Electron., Comm. Comput. Sci. 92,571575 (in Japanese).
[46] Suzaki M. and Osaki S. (2011).Numerical study for expected time to select a leader for five-hand Janken games.RIMS Kokyuroku 1734,164171 (in Japanese).
[47] Szabó G. and Fath G. (2007).Evolutionary games on graphs.Phys. Rep. 446,97216.
[48] Tainaka K. I. (1988).Lattice model for the Lotka–Volterra system.J. Phys. Soc. Japan 57,25882590.
[49] Tsybakov B. S. and Mikhailov V. A. (1978).Free synchronous packet access in a broadcast channel with feedback.Probl. Peredachi Inf. 14,3259.
[50] Von Neumann J. (1956).Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components. In Automata Studies, eds C. E. Shannon and J. McCarthy.Princeton University Press, pp.4398.
[51] Weiss G. (1962).On certain redundant systems which operate at discrete times.Technometrics 4,6974.
[52] Wendel J. G. (1962).A problem in geometric probability.Math. Scand. 11,109111.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Applied Probability
  • ISSN: 0021-9002
  • EISSN: 1475-6072
  • URL: /core/journals/journal-of-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 89 *
Loading metrics...

* Views captured on Cambridge Core between 4th April 2017 - 12th December 2017. This data will be updated every 24 hours.