Skip to main content
×
×
Home

Lumpings of Markov Chains, Entropy Rate Preservation, and Higher-Order Lumpability

  • Bernhard C. Geiger (a1) and Christoph Temmel (a2)
Abstract

A lumping of a Markov chain is a coordinatewise projection of the chain. We characterise the entropy rate preservation of a lumping of an aperiodic and irreducible Markov chain on a finite state space by the random growth rate of the cardinality of the realisable preimage of a finite-length trajectory of the lumped chain and by the information needed to reconstruct original trajectories from their lumped images. Both are purely combinatorial criteria, depending only on the transition graph of the Markov chain and the lumping function. A lumping is strongly k-lumpable, if and only if the lumped process is a kth-order Markov chain for each starting distribution of the original Markov chain. We characterise strong k-lumpability via tightness of stationary entropic bounds. In the sparse setting, we give sufficient conditions on the lumping to both preserve the entropy rate and be strongly k-lumpable.

Copyright
Corresponding author
Postal address: Institute for Communications Engineering, Technische Universiät München, Theresienstrasse 90, 80333 Munich. Email address: geiger@ieee.org
∗∗ Postal address: Department of Mathematics, VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. Email address: math@temmel.me
References
Hide All
[1] Anderson, B. D. O. (1999). The realization problem for hidden Markov models. Math. Control Signals Systems 12, 80120.
[2] Brown, P. F. et al. (1992). Class-based n-gram models of natural language. Comput. Linguist. 18, 467479.
[3] Blackwell, D. (1957). The entropy of functions of finite-state Markov chains. In Trans 1st Prague Conf. Inf. Theory, Statist. Decision Functions, (Liblice, 1956). Publishing House of the Czechoslovak Academy of Sciences, Prague, pp. 1320.
[4] Blackwell, D. and Koopmans, L. (1957). On the identifiability problem for functions of finite Markov chains. Ann. Math. Statist. 28, 10111015.
[5] Burke, C. J. and Rosenblatt, M. (1958). A Markovian function of a Markov chain. Ann. Math. Statist. 29, 11121122.
[6] Carlyle, J. W. (1967). Identification of state-calculable functions of finite Markov chains. Ann. Math. Statist. 38, 201205.
[7] Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory, 2nd edn. John Wiley, Hoboken, NJ.
[8] Ephraim, Y. and Merhav, N. (2002). Hidden Markov processes. IEEE Trans. Inf. Theory 48, 15181569.
[9] Geiger, B. C. and Kubin, G. (2011). Some results on the information loss in dynamical systems. In Proc. IEEE Internat. Symp. Wireless Commun. Systems (ISWSC), IEEE, New York, pp. 794798, 2011. Extended version available at http://uk.arxiv.org/abs/1106.2404.
[10] Geiger, B. C. and Temmel, C. (2013). Information-preserving Markov aggregation. In Proc. IEEE Information Theory Workshop (ITW), IEEE, New York, pp. 258262. Extended version available at http://uk.arxiv.org/abs/1304.0920.
[11] Gilbert, E. J. (1959). On the identifiability problem for functions of finite Markov chains. Ann. Math. Statist. 30, 688697.
[12] Gray, R. M. (1990). Entropy and Information Theory. Springer, New York.
[13] Gurvits, L. and Ledoux, J. (2005). Markov property for a function of a Markov chain: a linear algebra approach. Linear Algebra Appl. 404, 85117.
[14] Heiner, M., Rohr, C., Schwarick, M. and Streif, S. (2010). A comparative study of stochastic analysis techniques. In Proc. 8th Internat. Conf. Comput. Meth. Systems Biol., ACM, New York, pp. 96106.
[15] Heller, A. (1965). On stochastic processes derived from Markov chains. Ann. Math. Statist. 36, 12861291.
[16] Henzinger, T. A., Mikeev, L., Mateescu, M. and Wolf, V. (2010). Hybrid numerical solution of the chemical master equation. In Proc. 8th Internat. Conf. Comput. Meth. Systems Biol., ACM, New York, pp. 5565.
[17] Kemeny, J. G. and Snell, J. L. (1976). Finite Markov Chains. Springer, New York.
[18] Kieffer, J. C. and Rahe, M. (1981). Markov channels are asymptotically mean stationary. SIAM J. Math. Anal. 12, 293305.
[19] Lindqvist, B. (1978). On the loss of information incurred by lumping states of a Markov chain. Scand. J. Statist. 5, 9298.
[20] Parzen, E. (1999). Stochastic Processes (Classics Appl. Math. 24). Society for Industrial and Applied Mathematics, Philadelphia, PA.
[21] Pinsker, M. S. (1964). Information and Information Stability of Random Variables and Processes. Holden-Day, San Francisco, CA.
[22] Rogers, L. C. G. and Pitman, J. W. (1981). Markov functions. Ann. Prob. 9, 573582.
[23] Sarukkai, R. R. (2000). Link prediction and path analysis using Markov chains. Comput. Networks 33, 377386.
[24] Watanabe, S. and Abraham, C. T. (1960). Loss and recovery of information by coarse observation of stochastic chain. Inf. Control 3, 248278.
[25] Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton, FL.
[26] Woess, W. (2009). Denumerable Markov chains. Generating Functions, Boundary Theory, Random Walks on Trees. European Mathematical Society, Zürich.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Applied Probability
  • ISSN: 0021-9002
  • EISSN: 1475-6072
  • URL: /core/journals/journal-of-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 43 *
Loading metrics...

* Views captured on Cambridge Core between 30th January 2018 - 18th September 2018. This data will be updated every 24 hours.