Skip to main content Accessibility help
×
×
Home

A new stochastic model of microsatellite evolution

  • Richard Durrett (a1) and Semyon Kruglyak (a2)

Abstract

We introduce a continuous-time Markov chain model for the evolution of microsatellites, simple sequence repeats in DNA. We prove the existence of a unique stationary distribution for our model, and fit the model to data from approximately 106 base pairs of DNA from fruit flies, mice, and humans. The slippage rates from the best fit for our model are consistent with experimental findings.

Copyright

Corresponding author

Postal address: Department of Mathematics, 528 Mallott Hall, Cornell University, Ithaca, NY 14853, USA. Email address: rtd1@cornell.edu
∗∗ Postal address: 293 Denney Research Building, University of Southern California, Los Angeles, CA 90089, USA.

References

Hide All
[1] Amos, W., Saucer, S., Feakes, R., and Rubinsztein, D. (1996). Microsatellites show mutational bias and heterozygote instability. Nature Genet. 13, 390391.
[2] Ashley, C. T., and Warren, S. T. (1995). Trinucleotide repeat expansion and human disease. Ann. Rev. Genet. 29, 703728.
[3] Bell, G., and Jurka, J. (1997). The length distribution of perfect dimer repetitive DNA is consistent with its evolution by an unbiased single step mutation process. J. Mol. Evol. 44, 414421.
[4] Dallas, J. (1992). Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mammalian Genome 3, 452456.
[5] Dietrich, W., Katz, H., Lincoln, S. E., Shin, H. S., Friedman, J., Dracopoli, N. C., and Lander, E. S. (1992). A genetic map of the mouse suitable for typing interspecific crosses. Genetics 131, 423447.
[6] DiRienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., and Freimer, N. B. (1994). Mutational processes of simple sequence repeat loci in human populations. Proc. Nat. Acad. Sci. USA 91, 31663170.
[7] Feldman, M. W., Bergman, A., Pollock, D. D., and Goldstein, D. B. (1997). Microsatellite genetic distances with range constraints: Analytic description and problems of estimation. Genetics 145, 207216.
[8] Garza, J. C., Slatkin, M., and Freimer, N. B. (1995). Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol. Biol. Evol. 12, 594603.
[9] Goldstein, D. B., Ruiz-Linares, A., Cavalli-Sforza, L. L., and Feldman, M. W. (1995). An evaluation of genetic distances for use with microsatellite loci. Genetics 139, 463471.
[10] Goldstein, D. B., Ruiz-Linares, A., Cavalli-Sforza, L. L., and Feldman, M. W. (1995). Genetic absolute dating based on microsatellites and modern human origins. Proc. Nat. Acad. Sci. 92, 67236727.
[11] Hudson, R. R. (1990). Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology, Vol. 7, ed. Futuyama, D. J. and Antonovics, J. OUP, Oxford, pp. 144.
[12] Kimmel, M., and Chakraborty, R. (1996). Measures of variation at DNA repeat loci under a general stepwise mutation model. Theoret. Popul. Biol. 39, 3048.
[13] Levinson, G., and Gutman, G. A. (1987). Slipped–strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4, 203221.
[14] Li, W. H. (1997). Molecular Evolution. Sinauer Associates, Massachusetts, pp. 177236.
[15] McMurray, C. T. (1995). Mechanisms of DNA expansion. Chromosoma 104, 213.
[16] Moran, P. A. P (1975). Wandering distributions and the electrophoretic profile. Theoret. Pop. Biol. 8, 318330.
[17] Ohta, T., and Kimura, M. (1973). The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population. Genet. Res. 22, 201204.
[18] Petrukhin, K. E., Speer, M. C., Cayanis, E., DeFatima Bonaldo, M., Tantravahi, U., Soares, M. B., Fischer, S. G., Warburton, D., Gilliam, T. C., and Ott, J. (1993). A microsatellite genetic linkage map of human chromosome 13. Genomics 15, 7685.
[19] Primmer, C. R., Ellegren, H., Saino, N., and Moller, A. P. (1996). Directional evolution in germline microsatellite mutations. Nature Genet. 13, 391393.
[20] Pritchard, J. K., and Feldman, M. W. (1996). Statistics for microsatellite variation based on coalescence. Theoret. Popul. Biol. 50, 325344.
[21] Schlotterer, C., and Tautz, D. (1992). Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20, 211216.
[22] Schug, M. D., Wetterstrand, K., Gaudette, M., Lim, R., Hutter, C., and Aquadro, C. F. (1997). The distribution and frequency of microsatellite loci in Drosophila melanogaster. Submitted to Nucleic Acids research 1/29/97.
[23] Schug, M. D., Hutter, C. M., Wetterstrand, K. A., Gaudette, M. S., Mackay, T. F. C., and Aquadro, C. F. (1998). The mutation rate of di- tri– and tetranucleotide repeats in Drosophila melanogaster. Mol. Biol. Evol. 15, 17511760.
[24] Shriver, M. D., Jin, L., Chakraborty, R., and Boerwinkle, E. (1993). VNTR allele frequency distributions under the stepwise mutation model: A computer simulation approach. Genetics 134, 983993.
[25] Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457462.
[26] Slatkin, M. (1995) Hitchhiking and associative overdominance at a microsatellite locus. Mol. Biol. Evol. 12, 473480.
[27] Smith, G. P. (1973). Unequal crossover and the evolution of multigene families. Cold Spring Harbor Symp. Quant. Biol. 38, 507513.
[28] Takezaki, N., and Nei, M. (1996). Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144, 389399.
[29] Tavaré, S. (1984). Line-of-descent and genealogical processes and their application in population genetics models. Theoret. Pop. Biol. 26, 119164.
[30] Valdes, A., Slatkin, M., and Freimer, N. B. (1993). Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133, 737749.
[31] Weber, J. L., and Wong, C. (1993). Mutation of human short tandem repeats. Hum. Mol. Genet. 2, 11231128.
[32] Weissenbach, J., Gyapay, G., Dib, C., Vignal, A., Morissette, J., Millasseau, P., Vaysseix, G., and Lathrop, M. (1992). A second-generation linkage map of the human genome. Nature, 359, 794801.
[33] Wetterstrand, K. S. (1997). Microsatellite polymorphism and divergence in worldwide populations of Drosophila Melanogaster and D. simulans. , Cornell University, Ithaca, NY.
[34] Wierdl, M., Dominiska, M., and Petes, T. D. (1996). Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics, 146, 769779.
[35] Zhivotovsky, L. A., Feldman, M. W., and Grishechkin, S. A. (1997). Biased mutations and microsatellite variation. Mol. Biol. Evol. 14, 926933.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Applied Probability
  • ISSN: 0021-9002
  • EISSN: 1475-6072
  • URL: /core/journals/journal-of-applied-probability
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed