Hostname: page-component-cb9f654ff-h4f6x Total loading time: 0 Render date: 2025-08-21T07:00:09.465Z Has data issue: false hasContentIssue false

On the variance reduction of Hamiltonian Monte Carlo via an approximation scheme

Published online by Cambridge University Press:  19 August 2025

Zhonggen Su*
Affiliation:
Zhejiang University
Zeyu Yao*
Affiliation:
Zhejiang University
*
*Postal address: School of Mathematical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
*Postal address: School of Mathematical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.

Abstract

Let $\pi$ be a probability distribution in $\mathbb{R}^d$ and f a test function, and consider the problem of variance reduction in estimating $\mathbb{E}_\pi(f)$. We first construct a sequence of estimators for $\mathbb{E}_\pi (f)$, say $({1}/{k})\sum_{i=0}^{k-1} g_n(X_i)$, where the $X_i$ are samples from $\pi$ generated by the Metropolized Hamiltonian Monte Carlo algorithm and $g_n$ is the approximate solution of the Poisson equation through the weak approximate scheme recently invented by Mijatović and Vogrinc (2018). Then we prove under some regularity assumptions that the estimation error variance $\sigma_\pi^2(g_n)$ can be as arbitrarily small as the approximation order parameter $n\rightarrow\infty$. To illustrate, we confirm that the assumptions are satisfied by two typical concrete models, a Bayesian linear inverse problem and a two-component mixture of Gaussian distributions.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baxendale, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Prob. 15, 700738.10.1214/105051604000000710CrossRefGoogle Scholar
Betancourt, M. (2018). A conceptual introduction to Hamiltonian Monte Carlo. Preprint, arXiv:1701.02434.Google Scholar
Bou-Rabee, N. and Sanz-Serna, J. M. (2018). Geometric integrators and the Hamiltonian Monte Carlo method. Acta Numerica 27, 113206.10.1017/S0962492917000101CrossRefGoogle Scholar
Brooks, S., Gelman, A., Jones, G. and Meng, X.-L. (2011). Handbook of Markov Chain Monte Carlo, 1st edn. Chapman and Hall/CRC, New York.10.1201/b10905CrossRefGoogle Scholar
Douc, R., Moulines, E., Priouret, P. and Soulier, P. (2018). Markov Chains, 1st edn. Springer, Cham.CrossRefGoogle Scholar
Duane, S., Kennedy, A. D., Pendleton, B. J. and Roweth, D. (1987). Hybrid Monte Carlo. Phys. Lett. B 195, 216222.10.1016/0370-2693(87)91197-XCrossRefGoogle Scholar
Duistermaat, J. J. and Kolk, J. A. (2004). Multidimensional Real Analysis I: Differentiation, 1st edn. Cambridge University Press.Google Scholar
Durmus, A. and Moulines, E. (2015). Quantitative bounds of convergence for geometrically ergodic Markov chain in the Wasserstein distance with application to the Metropolis-adjusted Langevin algorithm. Statist. Comput. 25, 519.10.1007/s11222-014-9511-zCrossRefGoogle Scholar
Durmus, A., Moulines, E. and Saksman, E. (2020). Irreducibility and geometric ergodicity of Hamiltonian Monte Carlo. Ann. Statist. 48, 35453564.10.1214/19-AOS1941CrossRefGoogle Scholar
Eberle, A. and Majka, M. B. (2019). Quantitative contraction rates for Markov chains on general state spaces. Electron. J. Prob. 24, 136.10.1214/19-EJP287CrossRefGoogle Scholar
Gallegos-Herrada, M. A., Ledvinka, D. and Rosenthal, J. S. (2024). Equivalences of geometric ergodicity of Markov chains. J. Theoret. Prob. 37, 12301256.10.1007/s10959-023-01240-1CrossRefGoogle Scholar
Graham, C. and Talay, D. (2013). Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation, 1st edn. Springer, Berlin.10.1007/978-3-642-39363-1CrossRefGoogle Scholar
Jin, R. and Tan, X. (2020). Central limit theorems for Markov chains based on their convergence rates in Wasserstein distance. Preprint, arXiv:2002.09427.Google Scholar
Kamatani, K. and Song, X. (2021). Haar–Weave–Metropolis kernel. Preprint, arXiv:2111.06148.Google Scholar
Ma, Y., Chen, Y., Jin, C., Flammarion, N. and Jordan, M. (2019). Sampling can be faster than optimization. Proc. Nat. Acad. Sci. USA 116, 2088120885.CrossRefGoogle Scholar
Meyn, S. and Tweedie, R. L. (2009) Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press.10.1017/CBO9780511626630CrossRefGoogle Scholar
Mijatovic, A. and Vogrinc, J. (2018). On the Poisson equation for Metropolis–Hastings chains. Bernoulli 24, 24012428.10.3150/17-BEJ932CrossRefGoogle Scholar
Pillai, N. S., Stuart, A. M. and Thiéry, A. H.(2012). Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions. Ann. Appl. Prob. 22, 23202356.10.1214/11-AAP828CrossRefGoogle Scholar
Roberts, G. O. and Gilks, A. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Prob. 7, 110120.Google Scholar
Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete approximations to Langevin diffusions. J. R. Statist. Soc. B 60, 255268.10.1111/1467-9868.00123CrossRefGoogle Scholar
Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC algorithms. Prob. Surv. 1, 2071.10.1214/154957804100000024CrossRefGoogle Scholar
Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2, 341363.CrossRefGoogle Scholar
Vishnoi, N. K. (2021). An introduction to Hamiltonian Monte Carlo method for sampling. Preprint, arXiv:2108.12107.Google Scholar
Xifara, T., Sherlock, C., Livingstone, S., Byrne, S. and Girolami, M. (2014). Langevin diffusions and the Metropolis-adjusted Langevin algorithm. Statist. Prob. Lett. 91, 1419.10.1016/j.spl.2014.04.002CrossRefGoogle Scholar