Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T10:57:25.169Z Has data issue: false hasContentIssue false

R-positivity and the existence of zero-temperature limits of Gibbs measures on nearest-neighbor matrices

Published online by Cambridge University Press:  25 September 2023

Jorge Littin Curinao*
Affiliation:
Universidad Católica del Norte
Gerardo Corredor Rincón*
Affiliation:
Universidad Católica del Norte
*
*Postal address: Angamos 0610, Departamento de Matemáticas, Antofagasta-Chile.
*Postal address: Angamos 0610, Departamento de Matemáticas, Antofagasta-Chile.

Abstract

We study the $R_\beta$-positivity and the existence of zero-temperature limits for a sequence of infinite-volume Gibbs measures $(\mu_{\beta}(\!\cdot\!))_{\beta \geq 0}$ at inverse temperature $\beta$ associated to a family of nearest-neighbor matrices $(Q_{\beta})_{\beta \geq 0}$ reflected at the origin. We use a probabilistic approach based on the continued fraction theory previously introduced in Ferrari and Martínez (1993) and sharpened in Littin and Martínez (2010). Some necessary and sufficient conditions are provided to ensure (i) the existence of a unique infinite-volume Gibbs measure for large but finite values of $\beta$, and (ii) the existence of weak limits as $\beta \to \infty$. Some application examples are revised to put in context the main results of this work.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmussen, S. (2003). Applied Probability and Queues. Springer, New York.Google Scholar
Baraviera, A., Lopes, A. O. Thieullen, P. (2012). A large deviation principle for the equilibrium states of Hölder potentials: The zero temperature case. Stochastics and Dynamics 6, 7796.CrossRefGoogle Scholar
Billingsley, P. (2013). Convergence of Probability Measures. Wiley, Chichester.Google Scholar
Bissacot, R. and Garibaldi, E. (2010). Weak KAM methods and ergodic optimal problems for countable Markov shifts. Bull. Brazil. Math. Soc., New Ser. 41, 321338.CrossRefGoogle Scholar
Bissacot, R., Garibaldi, E. and Thieullen, P. (2018). Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergodic Theory and Dynamical Systems 38, 863885.CrossRefGoogle Scholar
Brémont, J. (2003). Gibbs measures at temperature zero. Nonlinearity 2, 419426.CrossRefGoogle Scholar
Chazottes, J.-R., Gambaudo, J.-M. and Ugalde, E. (2011). Zero-temperature limit of one-dimensional Gibbs states via renormalization: The case of locally constant potentials. Ergodic Theory Dynamical Systems 31, 11091161.CrossRefGoogle Scholar
Ferrari, P. A. and Martnez, S. (1993). Quasi-stationary distributions: Continued fraction and chain sequence criteria for recurrence. Resenhas do Instituto de Matemática e Estatstica da Universidade de São Paulo 1, 321333.Google Scholar
Freire, R. and Vargas, V. (2018). Equilibrium states and zero temperature limit on topologically transitive countable Markov shifts. Trans. Amer. Math. Soc. 370, 84518465.CrossRefGoogle Scholar
Gurevich, B. M. (1984). A variational characterization of one-dimensional countable state Gibbs random fields. Z. Wahrscheinlichkeitsth. 68, 205242.CrossRefGoogle Scholar
Jenkinson, O., Mauldin, R. D. and Urbński, M. (2005). Zero temperature limits of Gibbs-equilibrium states for countable alphabet subshifts of finite type. J. Statist. Phys. 119, 765776.CrossRefGoogle Scholar
Karlin, S. and McGregor, J. (1959). Random walks. Illinois J. Math. 3, 6681, 1959.CrossRefGoogle Scholar
Kempton, T. (2011). Zero temperature limits of Gibbs equilibrium states for countable Markov shifts. J. Statist. Phys. 143, 795806.CrossRefGoogle Scholar
Kulkarni, D., Schmidt, D. and Tsui, S.-K. (1999). Eigenvalues of tridiagonal pseudo-Toeplitz matrices. Linear Algebra Appl. 297, 6380.CrossRefGoogle Scholar
Leplaideur, R. (2005). A dynamical proof for the convergence of Gibbs measures at temperature zero. Nonlinearity 18, 28472880.CrossRefGoogle Scholar
Littin, J. and Martnez, S. (2010). R-positivity of nearest neighbor matrices and applications to Gibbs states. Stoch. Process. Appl. 120, 24322446.CrossRefGoogle Scholar
Seneta, E. (2006). Non-negative Matrices and Markov Chains. Springer, New York.Google Scholar
Vere-Jones, D. (1967). Ergodic properties of nonnegative matrices. I. Pacific J. Math. 22, 361386.CrossRefGoogle Scholar