Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T06:18:00.778Z Has data issue: false hasContentIssue false

Scaling limit of the local time of random walks conditioned to stay positive

Published online by Cambridge University Press:  13 February 2024

Wenming Hong*
Affiliation:
Beijing Normal University
Mingyang Sun*
Affiliation:
Beijing Normal University
*
*Postal address: School of Mathematical Sciences and Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, PR China.
*Postal address: School of Mathematical Sciences and Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, PR China.

Abstract

We prove that the local time of random walks conditioned to stay positive converges to the corresponding local time of three-dimensional Bessel processes by proper scaling. Our proof is based on Tanaka’s pathwise construction for conditioned random walks and the derivation of asymptotics for mixed moments of the local time.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanasyev, V. I. (2019). Convergence to the local time of Brownian meander. Discrete Math. Appl. 29, 149158.CrossRefGoogle Scholar
Bertoin, J. and Doney, R. A. (1994). On conditioning a random walk to stay nonnegative. Ann. Prob. 22, 21522167.CrossRefGoogle Scholar
Bolthausen, E. (1976). On a functional central limit theorem for random walks conditioned to stay positive. Ann. Prob. 4, 480485.CrossRefGoogle Scholar
Borodin, A. N. (1982). On the asymptotic behavior of local times of recurrent random walks with finite variance. Theory Prob. Appl. 26, 758772.CrossRefGoogle Scholar
Bryn-Jones, A. and Doney, R. A. (2006). A functional limit theorem for random walk conditioned to stay non-negative. J. London Math. Soc. 74, 244258.CrossRefGoogle Scholar
Caravenna, F. and Chaumont, L. (2008). Invariance principles for random walks conditioned to stay positive. Ann. Inst. H. Poincaré Prob. Statist. 44, 170190.CrossRefGoogle Scholar
Denisov, D. and Wachtel, V. (2016). Universality of local times of killed and reflected random walks. Electron. Commun. Prob. 21, 111.CrossRefGoogle Scholar
Denisov, D., Korshunov, D. and Wachtel, V. (2020). Renewal theory for transient Markov chains with asymptotically zero drift. Trans. Amer. Math. Soc. 373, 72537286.CrossRefGoogle Scholar
Durrett, R. T., Iglehart, D. L. and Miller, D. R. (1977). Weak convergence to Brownian meander and Brownian excursion. Ann. Prob. 5, 117129.Google Scholar
Dwass, M. (1975). Branching processes in simple random walk. Proc. Amer. Math. Soc. 51, 270274.CrossRefGoogle Scholar
Hong, W. and Wang, H. (2013). Intrinsic branching structure within $(L-1)$ random walk in random environment and its applications. Infinite Dimens. Anal. Quantum Prob. Relat. Top. 16, 1350006.CrossRefGoogle Scholar
Hong, W. and Zhang, L. (2010). Branching structure for the transient $(1;R)$ -random walk in random environment and its applications. Infinite Dimens. Anal. Quantum Prob. Relat. Top. 13, 589618.CrossRefGoogle Scholar
Hong, W., Yang, H. and Zhou, K. (2015). Scaling limit of local time of Sinai’s random walk. Front. Math. China 10, 13131324.CrossRefGoogle Scholar
Iglehart, D. L. (1974). Functional central limit theorems for random walks conditioned to stay positive. Ann. Prob. 2, 608619.CrossRefGoogle Scholar
Imhof, J. P. (1984). Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications. J. Appl. Prob. 21, 500510.CrossRefGoogle Scholar
Kersting, G. and Vatutin, V. (2017). Discrete Time Branching Processes in Random Environment. John Wiley, New York.CrossRefGoogle Scholar
Kesten, H., Kozlov, M. V. and Spitzer, F. (1975). A limit law for random walk in a random environment. Compositio Math. 30, 145168.Google Scholar
Li, Z. (2011). Measure-Valued Branching Markov Processes. Springer, Heidelberg.CrossRefGoogle Scholar
Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293). Springer, Berlin.Google Scholar
Roger, M. and Yor, M. (2008). Aspects of Brownian Motion. Springer, Berlin.Google Scholar
Rogers, L. C. G. (1984). Brownian local times and branching processes. In Seminar on Probability XVIII (Lecture Notes in Math. 1059), pp. 42–55. Springer, Berlin.CrossRefGoogle Scholar
Takacs, L. (1995). Limit distributions for the Bernoulli meander. J. Appl. Prob. 32, 375395.CrossRefGoogle Scholar
Tanaka, H. (1989). Time reversal of random walks in one-dimension. Tokyo J. Math. 12, 159174.CrossRefGoogle Scholar
Yang, H. (2019). Scaling limit of the local time of the reflected (1,2)-random walk. Statist. Prob. Lett. 155, 108578.CrossRefGoogle Scholar