Skip to main content Accessibility help

Slow variation and uniqueness of solutions to the functional equation in the branching random walk

  • A. E. Kyprianou (a1)


In this short communication, some of the recent results of Liu (1998) and Biggins and Kyprianou (1997), concerning solutions to a certain functional equation associated with the branching random walk, are strengthened. Their importance is emphasized in the context of travelling wave solutions to a discrete version of the KPP equation and the connection with the behaviour of the rightmost particle in the nth generation.


Corresponding author

Postal address: Department of Mathematics and Statistics, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh, EH9 3JZ, Scotland. Email address:


Hide All
Baringhaus, L. and Grübel, R. (1995). Random convex combinations of a new characterization of exponential distributions. Institut für Mathematische Stochastik, Universität Hannover.
Biggins, J. D. (1977). Martingale convergence in the branching random walk. J. Appl. Prob. 14, 2537.
Biggins, J. D. (1991). Uniform convergence of martingales in the one dimensional branching random walk. In Selected Proceedings of Sheffield Symposium on Applied Probability, ed. Baswa, I. V. and Taylor, R. L., IMS Lecture Notes Monograph Series 18, 159173.
Biggins, J. D., and Kyprianou, A. E. (1997). Seneta–Heyde norming in the branching random walk. Ann. Prob. 25, 337360.
Bramson, M. (1978). Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. XXXI, 531581.
Chauvin, B., and Roualt, A. (1997). Boltzmann–Gibbs weights in the branching random walk. In Classical and Modern Branching Processes, ed. Athreya, K. B. and Jagers, P., IMA Proceedings 84, 4150.
Cohn, H. (1985). A martingale approach to supercritical (CMJ) branching processes. Ann. Prob. 13, 11791191.
Durrett, R., and Liggett, M. (1983). Fixed points of the smoothing transform. Z. Wahrscheinlichkeitsth. 64, 275301.
Kahane, J. P. and Peyrière, J. (1976). Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22, 131145.
Kingman, J. F. C. (1975). The first birth problem for an age-dependent branching process. Ann. Prob. 3, 790801.
Kolmogorov, A. N., and Fomin, S. V. (1970). Introductory Real Analysis. Dover, New York.
Kyprianou, A. E. (1996). Seneta–Heyde norming in spatial branching processes and associated problems. , University of Sheffield.
Lalley, S. P., and Sellke, T. (1987). A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Prob. 15, 10521061.
Liu, Q. (1997). Sur une équation fonctionelle et ses applications: une extension du théorème de Kesten–Stigum concernant des processus de branchement. Adv. Appl. Prob. 29, 353373.
Liu, Q. (1998). Fixed points of a generalized smoothing transformation and its applications to the branching random walk. Adv. Appl. Prob. 30, 85113.
McDiarmid, C. (1995). Minimal positions in a branching random walk. Ann. Appl. Prob. 5, 128139.
McKean, H. P. (1975). Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Comm. Pure Appl. Math. XXIX, 553554.
Neveu, J. (1988). Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes 1987, ed. Çinlar, E., Chung, K. L. and Getoor, R. K. (Progress in Probability and Statistics 15). Birkhaüser, Boston, pp. 223241.
Pakes, A. G. (1992). On characterizations through mixed sums. Austral. J. Statist. 34, 323339.
Schuh, H. J. (1982). Seneta constants for the supercritical Bellman–Harris process. Adv. Appl. Prob. 14, 732751.
Waymire, E., and Williams, S. (1996). A cascade decomposition theory with applications to Markov and exchangeable cascades. Trans. Amer. Math. Soc. 348, 585632.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed