Hostname: page-component-7f64f4797f-7vssv Total loading time: 0 Render date: 2025-11-09T12:05:53.568Z Has data issue: false hasContentIssue false

The speed of a biased walk on a Galton–Watson tree without leaves is monotonic for low values of bias

Published online by Cambridge University Press:  05 March 2025

He Song*
Affiliation:
Huaiyin Normal University
Longmin Wang*
Affiliation:
Nankai University
Kainan Xiang*
Affiliation:
Xiangtan University
*
*Postal address: School of Mathematics and Statistics, Huaiyin Normal University Huaiyin 223300, P. R. China. Email: songhe@hytc.edu.cn
**Postal address: School of Statistics and Data Science, Nankai University Tianjin 300071, P. R. China. Email: wanglm@nankai.edu.cn
***Postal address: School of Mathematics and Computational Science, Xiangtan University Xiangtan City 210000, Hunan Province, P. R. China. Email: kainan.xiang@xtu.edu.cn

Abstract

We show that for $\lambda\in[0,{m_1}/({1+\sqrt{1-{1}/{m_1}}})]$, the biased random walk’s speed on a Galton–Watson tree without leaves is strictly decreasing, where $m_1\geq 2$. Our result extends the monotonic interval of the speed on a Galton–Watson tree.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adékon, E. (2007). Transient random walks in random environment on a Galton–Watson tree. Preprint, available at: https://hal.science/hal-00180001v1.Google Scholar
Adékon, E. (2014). Speed of the biased random walk on a Galton–Watson tree. Prob. Theory Relat. Fields 159, 597617.CrossRefGoogle Scholar
Ben-Arous, G. and Fribergh, A. (2016). Biased random walks on random graphs. In Probability and Statistical Physics in St. Petersburg (Proc. Symp. Pure Math. 91), eds V. Sidoravicius and S. Smirnov, American Mathematical Society, Providence, RI, pp. 99–153.Google Scholar
Ben-Arous, G., Fribergh, A. and Sidoravicius, V. (2014). Lyons–Pemantle–Peres monotonicity problem for high biases. Commun. Pure Appl. Math. 67, 519530.CrossRefGoogle Scholar
Ben-Arous, G., Hu, Y.-Y., Olla, S. and Zeitouni, O. (2013). Einstein relation for biased random walk on Galton–Watson trees. Ann. Inst. H. Poincaré Prob. Statist. 49, 698721.CrossRefGoogle Scholar
Berretti, A. and Sokal, A. D. (1985). New Monte Carlo method for the self-avoiding walk. J. Statist. Phys. 40, 483531.CrossRefGoogle Scholar
Gantert, N., Müller, S., Popov, S. and Vachkovskaia, M. (2012). Random walks on Galton–Watson trees with random conductances. Stoch. Process. Appl. 122, 16521671.CrossRefGoogle Scholar
Lyons, R. (1990). Random walks and percolation on trees. Ann. Prob. 18, 931958.CrossRefGoogle Scholar
Lyons, R. (1992). Random walks, capacity, and percolation on trees. Ann. Prob. 20, 20432088.Google Scholar
Lyons, R., Pemantle, R. and Peres, Y. (1995). Ergodic theory on Galton–Watson trees: Speed of random walk and dimension of harmonic measure. Ergod. Theory Dyn. Syst. 15, 593619.CrossRefGoogle Scholar
Lyons, R., Pemantle, R. and Peres, Y. (1996). Biased random walks on Galton–Watson trees. Prob. Theory Relat. Fields 106, 249264.CrossRefGoogle Scholar
Lyons, R., Pemantle, R. and Peres, Y. (1997). Unsolved problems concerning random walks on trees. In Classical and Modern Branching Processes, eds K. Athreya and P. Jagers, Springer, New York, pp. 223–238.CrossRefGoogle Scholar
Lyons, R. and Peres, Y. (2017). Probability on Trees and Networks. Cambridge University Press.Google Scholar
Song, H., Wang, L.-M., Xiang, K.-N. and Zang, Q.-P. (2024). The continuity of biased random walk’s spectral radius on free product graphs. AIMS Math. 9, 1952919545.CrossRefGoogle Scholar
Song, H. and Xiang, K.-N. (2015). Biased random walk on block free product groups: Speed. Preprint.Google Scholar
Thorisson, H. (1983). The coupling of regenerative processes. Adv. Appl. Prob. 15, 531561.CrossRefGoogle Scholar