Skip to main content Accessibility help
×
Home

A Shadow Rate or a Quadratic Policy Rule? The Best Way to Enforce the Zero Lower Bound in the United States

Published online by Cambridge University Press:  18 December 2018

Abstract

We study whether it is better to enforce the zero lower bound (ZLB) in models of U.S. Treasury yields using a shadow rate model or a quadratic term structure model. We show that the models achieve a similar in-sample fit and perform comparably in matching conditional expectations of future yields. However, when the recent ZLB period is included in the sample, the models’ ability to match conditional expectations away from the ZLB deteriorates because the time-series dynamics of the pricing factors change. In addition, neither model provides a reasonable description of conditional volatilities when yields are away from the ZLB.

Type
Research Article
Copyright
Copyright © Michael G. Foster School of Business, University of Washington 2018

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

1

We give special thanks to Hendrik Bessembinder (the editor) and Jean-Sébastien Fontaine (the referee) for many helpful suggestions. We thank Jens Christensen, Michiel De Pooter, Hans Dewachter, Gregory R. Duffee, Tom Engsted, Peter Hördahl, Scott Joslin, Don Kim, Donna Lormand, Thomas Pedersen, Jean-Paul Renne, Glenn Rudebusch, Oreste Tristani, and Chris Young for helpful comments, as well as seminar participants at the 2015 SoFie Conference, the Federal Reserve Bank of San Francisco, the European Central Bank, and the Bank of England. Andreasen acknowledges financial support from the Danish e-Infrastructure Cooperation (DeIC) and financial support from CREATES (Center for Research in Econometric Analysis of Time Series; DNRF78) from the Danish National Research Foundation. Meldrum acknowledges the Bank of England, where he worked during the preparation of an early draft of this article (Bank of England Staff Working Paper No. 550, Sept. 2015). The analysis and conclusions are those of the authors and do not indicate concurrence by the Bank of England, the Board of Governors of the Federal Reserve System, or other members of the research staff of the Board.

References

Adrian, T.; Crump, R. K.; and Moench, E.. “Pricing the Term Structure with Linear Regressions.” Journal of Financial Economics, 110 (2013), 110138.CrossRefGoogle Scholar
Ahn, D.-H.; Dittmar, R. F.; and Gallant, A. R.. “Quadratic Term Structure Models: Theory and Evidence.” Review of Financial Studies, 15 (2002), 243288.CrossRefGoogle Scholar
Andersen, T. G.; Fusari, N.; and Todorov, V.. “Parametric Inference and Dynamic State Recovery from Option Panels.” Econometrica, 83 (2015), 10811145.CrossRefGoogle Scholar
Andreasen, M. M., and Christensen, B. J.. “The SR Approach: A New Estimation Procedure for Non-Linear and Non-Gaussian Dynamic Term Structure Models.” Journal of Econometrics, 184 (2015), 420451.CrossRefGoogle Scholar
Bauer, M. D., and Rudebusch, G. D.. “Monetary Policy Expectations at the Zero Lower Bound.” Journal of Money, Credit and Banking, 48 (2016), 14401465.CrossRefGoogle Scholar
Bauer, M. D.; Rudebusch, G. D.; and Wu, J. C.. “Correcting Estimation Bias in Dynamic Term Structure Models.” Journal of Business and Economic Statistics, 30 (2012), 454467.CrossRefGoogle Scholar
Black, F.Interest Rates as Options.” Journal of Finance, 50 (1995), 13711376.CrossRefGoogle Scholar
Bollerslev, T.Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics, 31 (1986), 307327.CrossRefGoogle Scholar
Campbell, J. Y., and Shiller, R. J.. “Yield Spread and Interest Rate Movements: A Bird’s Eye View.” Review of Economic Studies, 58 (1991), 495514.CrossRefGoogle Scholar
Christensen, J. H. E.; Diebold, F. X.; and Rudebusch, G. D.. “The Affine Arbitrage-Free Class of Nelson–Siegel Term Structure Models.” Journal of Econometrics, 164 (2011), 420.CrossRefGoogle Scholar
Christensen, J. H. E., and Rudebusch, G. D.. “Estimating Shadow-Rate Term Structure Models with Near-Zero Yields.” Journal of Financial Econometrics, 13 (2015), 226259.CrossRefGoogle Scholar
Cochrane, J. H., and Piazzesi, M.. “Decomposing the Yield Curve.” Working Paper, University of Chicago (2008).CrossRefGoogle Scholar
Cox, J. C.; Ingersoll, J. E.; and Ross, S. A.. “A Theory of the Term Structure of Interest Rates.” Econometrica, 53 (1985), 385407.CrossRefGoogle Scholar
Dai, Q., and Singleton, K. J.. “Specification Analysis of Affine Term Structure Models.” Journal of Finance, 55 (2000), 19461978.CrossRefGoogle Scholar
Dai, Q., and Singleton, K. J.. “Expectation Puzzles, Time-Varying Risk Premia and Affine Models of the Term Structure.” Journal of Financial Economics, 63 (2002), 415441.CrossRefGoogle Scholar
Diebold, F. X., and Li, C.. “Forecasting the Term Structure of Government Bond Yields.” Journal of Econometrics, 130 (2006), 337364.CrossRefGoogle Scholar
Duffee, G. R.Term Premia and Interest Rate Forecasts in Affine Models.” Journal of Finance, 57 (2002), 405443.CrossRefGoogle Scholar
Duffee, G. R.“Sharpe Ratios in Term Structure Models.” Working Paper, Johns Hopkins University (2010).Google Scholar
Duffee, G. R.“Forecasting with the Term Structure: The Role of No-Arbitrage Restrictions.” Working Paper, Johns Hopkins University (2011a).Google Scholar
Duffee, G. R.Information in (and not in) the Term Structure.” Review of Financial Studies, 24 (2011b), 28952934.CrossRefGoogle Scholar
Fama, E. F., and Bliss, R. R.. “The Information in Long-Maturity Forward Rates.” American Economic Review, 77 (1987), 680692.Google Scholar
Feunou, B.; Fontaine, J.-S.; Le, A.; and Lundblad, C.. “Tractable Term-Structure Models and the Zero Lower Bound.” Working Paper, Bank of Canada (2015).CrossRefGoogle Scholar
Filipovic, D.; Larsson, M.; and Trolle, A. B.. “Linear-Rational Term Structure Models.” Journal of Finance, 72 (2017), 655704.CrossRefGoogle Scholar
Joslin, S.; Singleton, K. J.; and Zhu, H.. “A New Perspective on Gaussian Dynamic Term Structure Models.” Review of Financial Studies, 24 (2011), 926970.CrossRefGoogle Scholar
Kim, D. H.“Spanned Stochastic Volatility in Bond Markets: A Reexamination of the Relative Pricing between Bonds and Bond Options.” Working Paper, Bank for International Settlements (2007).CrossRefGoogle Scholar
Kim, D. H., and Singleton, K. J.. “Term Structure Models and the Zero Bound: An Empirical Investigation of Japanese Yields.” Journal of Econometrics, 170 (2012), 3249.CrossRefGoogle Scholar
Leippold, M., and Wu, L.. “Asset Pricing under the Quadratic Class.” Journal of Financial and Quantitative Analysis, 37 (2002), 271295.CrossRefGoogle Scholar
Mincer, J. A., and Zarnowitz, V.. “The Evaluation of Economic Forecasts.” In Economic Forecasts and Expectations: Analyses of Forecasting Behavior and Performance, Mincer, J., ed. New York, NY: National Bureau of Economic Research (1969), 346.Google Scholar
Monfort, A.; Pegoraro, F.; Renne, J.-P.; and Roussellet, G.. “Staying at Zero with Affine Processes: A New Dynamic Term Structure Model.” Journal of Econometrics, 201 (2017), 348366.CrossRefGoogle Scholar
Priebsch, M. A.“Computing Arbitrage-Free Yields in Multi-Factor Gaussian Shadow-Rate Term Structure Models.” Finance and Economics Discussion Series. Working Paper, Federal Reserve Board (2013).CrossRefGoogle Scholar
Realdon, M.Quadratic Term Structure Models in Discrete Time.” Finance Research Letters, 3 (2006), 277289.CrossRefGoogle Scholar
Realdon, M.Gaussian Models for Euro High Grade Government Yields.” European Journal of Finance, 23 (2016), 144.Google Scholar
Rudebusch, G. D., and Wu, T.. “Accounting for a Shift in Term Structure Behavior with No-Arbitrage and Macro-Finance Models.” Journal of Money, Credit and Banking, 39 (2007), 395422.CrossRefGoogle Scholar
Wu, J. C., and Xia, F. D.. “Measuring the Macroeconomic Impact of Monetary Policy at the Zero Lower Bound.” Journal of Money Credit and Banking, 48 (2016), 253291.CrossRefGoogle Scholar

Andreasen and Meldrum supplementary material

Andreasen and Meldrum supplementary material

File 195 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 235 *
View data table for this chart

* Views captured on Cambridge Core between 18th December 2018 - 27th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-2qp9q Total loading time: 0.289 Render date: 2021-01-27T21:09:35.068Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Shadow Rate or a Quadratic Policy Rule? The Best Way to Enforce the Zero Lower Bound in the United States
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Shadow Rate or a Quadratic Policy Rule? The Best Way to Enforce the Zero Lower Bound in the United States
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Shadow Rate or a Quadratic Policy Rule? The Best Way to Enforce the Zero Lower Bound in the United States
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *