Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-j5sqr Total loading time: 0.315 Render date: 2022-10-03T16:00:03.413Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

The Maximum Entropy Distribution of an Asset Inferred from Option Prices

Published online by Cambridge University Press:  06 April 2009

Peter W. Buchen
Affiliation:
School of Mathematics and Statistics, University of Sydney, Australia
Michael Kelly
Affiliation:
Department of Mathematical Sciences, University of Western Sydney, Macarthur, Australia

Abstract

This paper describes the application of the Principle of Maximum Entropy to the estimation of the distribution of an underlying asset from a set of option prices. The resulting distribution is least committal with respect to unknown or missing information and is, hence, the least prejudiced. The maximum entropy distribution is the only information about the asset that can be inferred from the price data alone. An extension to the Principle of Minimum Cross-Entropy allows the inclusion of prior knowledge of the asset distribution. We show that the maximum entropy distribution is able to accurately fit a known density, given simulated option prices at different strikes.

Type
Research Article
Copyright
Copyright © School of Business Administration, University of Washington 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agmon, N.; Alhassid, Y.; and Levine, R. D.. “An Algorithm for Determining the Lagrange Parameters in the Maximal Entropy Formalism.” In The Maximum Entropy Formalism, Levine, R. D. and Tribus, M., eds. Cambridge, MA: MIT Press (1981), 207209.Google Scholar
Amin, K. I., and Ng, V. K.. “Option Valuation with Systematic Stochastic Volatility.” Journal of Finance, 48 (1993), 881910.CrossRefGoogle Scholar
Breeden, D. T., and Litzenberger, R. H.. “Price of State-Contingent Claims Implicit in Option Prices.” Journal of Business, 51 (1978), 621651.CrossRefGoogle Scholar
Brennan, M.The Pricing of Contingent Claims in Discrete-Time Models.” Journal of Finance, 34 (1979), 5368.CrossRefGoogle Scholar
Cover, T. M., and Joy, T. A.. Elements of Information Theory. New York, NY: John Wiley and Sons (1991).CrossRefGoogle Scholar
Derman, E., and Kani, I.. “Riding on a Smile.” Risk, 7 (02 1994), 3239.Google Scholar
Dupire, B.Pricing and Hedging with Smiles.” Risk, 7 (01 1994), 1820.Google Scholar
Derman, E., and Kani, I.. “Arbitrage Pricing with Stochastic Volatility.” Working Paper, Proceedings of AFFI Conference, Paris (06 1992).Google Scholar
Jarrow, R., and Rudd, A.. “Approximate Option Valuation for Arbitrary Stochastic Processes.” Journal of Financial Economics, 10 (1982), 347369.CrossRefGoogle Scholar
Jaynes, E. T.Information Theory and Statistical Mechanics.” Physics Reviews, 106 (1957), 620630.CrossRefGoogle Scholar
Jaynes, E. T. “Where do We Stand on Maximum Entropy?” In The Maximum Entropy Formalism, Levine, R. D. and Tribus, M., eds. Cambridge, MA: MIT Press (1979), 115118.Google Scholar
Jaynes, E. T.On the Rationale of Maximum-Entropy Methods.” Proceedings of the IEEE, 70 (1982), 939952.CrossRefGoogle Scholar
Longstaff, F. A. “Option Pricing and the Martingale Restriction.” Finance Working Paper No. 8–94, Univ. of California (05 1994).Google Scholar
Rubinstein, M. “Implied Binomial Tree.” Finance Working Paper No. 232, Univ. of California (01 1994).Google Scholar
Shannon, C. E.The Mathematical Theory of Communication.” Bell Systems Technical Journal, 27 (1948), 379423.CrossRefGoogle Scholar
Shimko, D.Bounds of Probability.” Risk, 6 (1990), 3337.Google Scholar
220
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Maximum Entropy Distribution of an Asset Inferred from Option Prices
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The Maximum Entropy Distribution of an Asset Inferred from Option Prices
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The Maximum Entropy Distribution of an Asset Inferred from Option Prices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *