Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-16T09:03:01.727Z Has data issue: false hasContentIssue false

About the role of the Hanratty correction in the linear response of a turbulent flow bounded by a wavy wall

Published online by Cambridge University Press:  27 July 2023

François Chedevergne*
Affiliation:
DMPE, ONERA, Université de Toulouse, Toulouse, France
Maxime Stuck
Affiliation:
CEA-CESTA, 15 Avenue des Sablières, CS60001, 33116 Le Barp CEDEX, France
Marina Olazabal-Loumé
Affiliation:
CEA-CESTA, 15 Avenue des Sablières, CS60001, 33116 Le Barp CEDEX, France
Jacques Couzi
Affiliation:
CEA-CESTA, 15 Avenue des Sablières, CS60001, 33116 Le Barp CEDEX, France
*
Email address for correspondence: francois.chedevergne@onera.fr

Abstract

Scallop patterns forming on erodible surfaces were studied historically using a linear analysis of the inner region of a turbulent boundary layer growing on a corrugated wall. Experimental observations show a phase shift between the shear stress at the wall and the wall oscillation that depends on the wavenumber. An ad hoc correction applied to the turbulent closure and due to Hanratty et al. (Thorsness et al., Chem. Engng Sci., vol. 33, issue 5, 1978, pp. 579–592; Abrams & Hanratty, J. Fluid Mech., vol. 151, issue 1, 1985, p. 443; Frederick & Hanratty, Exp. Fluids, vol. 6, issue 7, 1988, pp. 477–486) was systematically used to recover the reference experimental results. In this study, Reynolds-averaged Navier–Stokes (RANS) and direct numerical simulations (DNS) were performed and revealed the role of the Boussinesq assumption in the results obtained. We show that the Hanratty correction acts as a palliative to the misrepresentation of Reynolds stresses due to the use of the Boussinesq hypothesis. The RANS calculations based on a turbulence model using a second-order moment closure recovered the expected results obtained in the reference DNS calculations, in particular with respect to wall heat transfer. The analysis of these results highlights the critical importance of the anisotropy of the diagonal Reynolds stresses on the prediction of wall transfer under these conditions and their implication in the occurrence of scalloping.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, J. & Hanratty, T.J. 1985 Relaxation effects observed for turbulent flow over a wavy surface. J. Fluid Mech. 151 (1), 443.CrossRefGoogle Scholar
Anderson, C.H., Jr., Behrens, C.J., Floyd, G.A., Vining, M.R., Behrens, C.J., Floyd, G.A. & Vining, M.R. 1998 Crater firn caves of Mount St Helens, Washington. J. Cave Karst Stud. 60 (1), 4450.Google Scholar
Aupoix, B., Arnal, D., Bézard, H., Chaouat, B., Chedevergne, F., Deck, S., Gleize, V., Grenard, P. & Laroche, E. 2011 Transition and turbulence modeling. Aerosp. Lab 2, 128.Google Scholar
Bagnold, R. 1941 The Physics of Blown Sand and Desert Dunes. Springer.Google Scholar
Baker, R.L. 1972 Low temperature ablator nosetip shape change at angle of attack. In 10th Aerospace Sciences Meeting. AIAA Paper 72-0090. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Belcher, S.E. & Hunt, J.C.R. 1998 Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 30 (1), 507538.CrossRefGoogle Scholar
Benjamin, T.B. 1959 Shearing flow over a wavy boundary. J. Fluid Mech. 6 (2), 161205.CrossRefGoogle Scholar
Best, J. 2005 The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. 110 (F4). DOI: 10.1029/2004JF000218.Google Scholar
Blumberg, P.N. & Curl, R.L. 1974 Experimental and theoretical studies of dissolution roughness. J. Fluid Mech. 65 (4), 735751.CrossRefGoogle Scholar
Bradshaw, P., Ferriss, D.H. & Atwell, N.P. 1967 Calculation of boundary-layer development using the turbulent energy equation. J. Fluid Mech. 28 (3), 593616.CrossRefGoogle Scholar
Brauer, H. 1963 Flow resistance in pipes with ripple roughness. Chem. Rev. Engng 87, 199210.Google Scholar
Brunton, J.H. 1966 A discussion on deformation of solids by the impact of liquids, and its relation to rain damage in aircraft and missiles, to blade erosion in steam turbines, and to cavitation erosion - high speed liquid impact. Phil. Trans. R. Soc. A 260 (1110), 7985.Google Scholar
Canning, T.N., Tauber, M.E. & Wilkins, M.E. 1968 Ablation patterns on cones having laminar and turbulent flows. AIAA J. 6 (1), 174175.CrossRefGoogle Scholar
Canuto, C., Hussaini, M.Y., Quarteroni, A. & Zang, T.A. 2006 Spectral Methods. Springer.CrossRefGoogle Scholar
Cebeci, T. & Smith, A.M.O. 1974 Analysis of Turbulent Boundary Layers, Applied Mathematics and Mechanics, vol. 15. Academic Press.Google Scholar
Chapelier, J.-B., Lodato, G. & Jameson, A. 2016 A study on the numerical dissipation of the spectral difference method for freely decaying and wall-bounded turbulence. Comput. Fluids 139, 261280.CrossRefGoogle Scholar
Charru, F., Andreotti, B. & Claudin, P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech. 45 (1), 469493.CrossRefGoogle Scholar
Charru, F. & Hinch, E.J. 2000 Phase diagram of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195223.CrossRefGoogle Scholar
Claudin, F. & Ernstson, K. 2004 Regmaglypts on clasts from the Puerto Mínguez ejecta, Azuara multiple impact event (Spain). Tech. Rep. from http://www.impact-structures.com/article%20text.pdf.Google Scholar
Claudin, P., Duran, O. & Andreotti, B. 2017 Dissolution instability and roughening transition. J. Fluid Mech. 832, R2.CrossRefGoogle Scholar
Daly, B.J. & Harlow, F.H. 1970 Transport equations in turbulence. Phys. Fluids 13 (11), 26342649.CrossRefGoogle Scholar
Dehoux, F., Benhamadouche, S. & Manceau, R. 2017 An elliptic blending differential flux model for natural, mixed and forced convection. Intl J. Heat Fluid Flow 63, 190204.CrossRefGoogle Scholar
Fourrière, A., Claudin, P. & Andreotti, B. 2010 Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. J. Fluid Mech. 649, 287328.CrossRefGoogle Scholar
Frederick, K.A. & Hanratty, T.J. 1988 Velocity measurements for a turbulent nonseparated flow over solid waves. Exp. Fluids 6 (7), 477486.CrossRefGoogle Scholar
Heimsch, R., Hegele, E., Pfau, B., Bursik, A., Richter, R. & Welter, H. 1978 Beobachtungen über den Einfluss von Massenstrom, Geschwindigkeit und mechanischer Beanspruchung auf das Schichtwachstum in Heißwasser. VGB Kraftwerkstech. 58, 117126.Google Scholar
Hochrein, G. & Wright, G. 1976 Analysis of the TATER nosetip boundary layer transition and ablation experiment. In 14th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics. DOI: 10.2514/6.1976-167.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20 (10), 101511.CrossRefGoogle Scholar
Knutsson, L., Mattsson, E. & Ramberg, B-E. 1972 Erosion corrosion in copper water tubing. Brit. Corros. J. 7 (5), 208211.CrossRefGoogle Scholar
Laganelli, A.L. & Nestler, D.E. 1969 Surface ablation patterns - a phenomenology study. AIAA J. 7 (7), 13191325.CrossRefGoogle Scholar
Larson, H. & Mateer, G. 1968 Cross-hatching - a coupling of gas dynamics with the ablation process. In Fluid and Plasma Dynamics Conference. American Institute of Aeronautics and Astronautics. DOI: 10.2514/6.1968-670.CrossRefGoogle Scholar
Lin, T.C. & Qun, P. 1987 On the formation of regmaglypts on meteorites. Fluid Dyn. Res. 1 (3–4), 191199.CrossRefGoogle Scholar
Loyd, R.J., Moffat, R.J. & Kays, W.M. 1970 The turbulent boundary layer on a porous plate: an experimental study of fluid dynamics with strong favourable pressure gradients and blowing. Tech. Rep. HMT-13. Thermoscience Div. Univ. Stanford.Google Scholar
Luchini, P. & Charru, F. 2019 On the large difference between Benjamin's and Hanratty's formulations of perturbed flow over uneven terrain. J. Fluid Mech. 871, 534561.CrossRefGoogle Scholar
Manceau, R. 2015 Recent progress in the development of the elliptic blending Reynolds-stress model. Intl J. Heat Fluid Flows 51, 195220.CrossRefGoogle Scholar
Manceau, R. & Hanjalić, K. 2002 Elliptic blending model: a near-wall Reynolds-stress turbulence closure. Phys. Fluids 14 (2), 744754.CrossRefGoogle Scholar
McAlees, S. & Maydew, R.C. 1985 Aerothermodynamic design of high speed rockets. J. Spacecr. Rockets 22 (3), 309315.CrossRefGoogle Scholar
Menter, F. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 15981605.CrossRefGoogle Scholar
Mikhatulin, D.S. & Polezhaev, Y.V. 1996 Simulation of turbulent heat-mass transfer on ablating surfaces. Fluid Dyn. 31 (1), 114120.CrossRefGoogle Scholar
Nestler, D.E. 1971 Compressible turbulent boundary-layer heat transfer to rough surfaces. AIAA J. 9 (9), 17991803.CrossRefGoogle Scholar
Pflitsch, A., Cartaya, E., McGregor, B., Holmgren, D. & Steinhöfel, B. 2017 Climatologic studies inside sandy glacier at mount hood volcano in Oregon, USA. J. Cave Karst Stud. 79 (3), 189206.CrossRefGoogle Scholar
Powars, C. 2011 Overview of roughness and blowing effects in flows over ablating surfaces. In Fourth Annual AFOSR/NASA/SNL Ablation Workshop.Google Scholar
Reineke, W.G. & Guillot, M.J. 1995 Full scale ablation testing of candidate hypervelocity nose tip materials. In Ballistics International Symposium, vol. 2, pp. 81–88. The International Ballistics Committee.Google Scholar
Scherrer, D., et al. 2011 Recent CEDRE applications. Aerosp. Lab 2, 128.Google Scholar
Schoch, W. 1968 Erfahrungen im Bau und Betrieb eines überkritischen. Mehrweller-Kraftwerksblocks mit doppelter Rauchgaszwischenüberhitzung. VGB Kraftwerkstech. 48 (4), 239253.Google Scholar
Schoch, W., Richter, R. & Effertz, P.H. 1970 a Untersuchung über die Magnetitbildung in einem überkritischen Benson-Kessel. Der Maschinenschaden 43, 65.Google Scholar
Schoch, W., Richter, R. & Köhle, H. 1969 Untersuchungen über Druckverlustanstieg und Magnetitbildung an einem Benson-Kessel mit überkritischem Druck. VGB-Kraftwerkstech. 49, 202208.Google Scholar
Schoch, W., Wiehn, H., Richter, R. & Schuster, H. 1970 b Investigations into increased pressure loss and magnetite formation in a Benson boiler. Mitt Verein Grosskesselbetrieber 50 (4), 277295.Google Scholar
Schuster, H. 1971 Magnetitbildung und Druckverlustanstig im Verdampfer von Bensonkesseln. All.-Ber. F. Betriebstechn. U. Schadenverh 16, 2836.Google Scholar
Seiferth, R & Krüger, W 1950 Überraschend hohe Reibungsziffer einer Fernwasserleitung. VDI-Zeitschrift Bd. 92, 189191.Google Scholar
Shimizu, A.B., Ferrell, J.E. & Powars, C.A. 1974 Passive Nosetip Technology (PANT) Program, Volume XII, Nosetip Transition and Shape Change Tests in the AFFDL 50 MW Rent Arc - Data Report. Tech. Rep. SAMSO-TR-74-86. Air Force Space and Missile Systems Organization.Google Scholar
Sick, H. 1972 Die Erosionsbeständigkeit von Kupferwerkstoffen gegenüber strömendem Wasser. Werkst. Korros. 23 (1), 1218.CrossRefGoogle Scholar
Sundqvist, H.S., Seibert, J. & Holmgren, K. 2007 Understanding conditions behind speleothem formation in Korallgrottan, Northwestern Sweden. J. Hydrol. 347 (1–2), 1322.CrossRefGoogle Scholar
Thomas, R.M. 1979 Size of scallops and ripples formed by flowing water. Nature 277 (5694), 281283.CrossRefGoogle Scholar
Thorsness, C.B., Morrisroe, P.E. & Hanratty, T.J. 1978 A comparison of linear theory with measurements of the variation of shear stress along a solid wave. Chem. Engng Sci. 33 (5), 579592.CrossRefGoogle Scholar
Veilleux, A., Puigt, G., Deniau, H. & Daviller, G. 2022 a A stable spectral difference approach for computations with triangular and hybrid grids up to the 6 order of accuracy. J. Comput. Phys. 449, 110774.CrossRefGoogle Scholar
Veilleux, A., Puigt, G., Deniau, H. & Daviller, G. 2022 b Stable spectral difference approach using Raviart-Thomas elements for 3D computations on tetrahedral grids. J. Sci. Comput. 91 (1), 7.CrossRefGoogle Scholar
Villien, B., Zheng, Y. & Lister, D. 2001 The scalloping phenomenon in flow-assisted-corrosion. In Twenty Sixth Annual CNS-CNA Student Conference. Canadian Nuclear Society.Google Scholar
Villien, B., Zheng, Y. & Lister, D. 2005 Surface dissolution and the development of scallops. Chem. Engng Commun. 192 (1), 125136.CrossRefGoogle Scholar
Vinent, O.D., Andreotti, B., Claudin, P. & Winter, C. 2019 A unified model of ripples and dunes in water and planetary environments. Nat. Geosci. 12 (5), 345350.CrossRefGoogle Scholar
White, C.O. & Grabow, R.M. 1973 Surface patterns – comparison of experiment WIH theory. AIAA J. 11 (9), 13161322.CrossRefGoogle Scholar
Wiederhold, W. 1949 Effect of wall deposits on hydraulic loss in pipelines. Gas WassFach 90, 634641.Google Scholar
Williams, E.P. 1971 Experimental studies of ablation surface patterns and resulting roll torques. AIAA J. 9 (7), 13151321.CrossRefGoogle Scholar
Zilker, D.P., Cook, G.W. & Hanratty, T.J. 1977 Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows. J. Fluid Mech. 82 (1), 2951.CrossRefGoogle Scholar
Zilker, D.P. & Hanratty, T.J. 1979 Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 2. Separated flows. J. Fluid Mech. 90 (2), 257271.CrossRefGoogle Scholar