Published online by Cambridge University Press: 26 April 2006
An angular spectrum model for predicting the transformation of Stokes waves on a mildly varying topography is developed, including refraction, diffraction, shoaling and nonlinear wave interactions. The equations governing the water-wave motion are perturbed using the method of multiple scales and Stokes expansions for the velocity potential and free-surface displacement. The first-order solution is expressed as an angular spectrum, or directional modes, of the wave field propagating on a beach with straight iso-baths whose depth is given by laterally averaged depths. The equations for the evolution of the angular spectrum due to the effects of bottom variation and cubic resonant interaction are obtained from the higher-order problems. Comparison of the present model with existing models is made for some simple cases. Numerical examples of the time-independent version of the model are presented for laboratory experiments for wave diffraction behind a breakwater gap and wave focusing over submerged shoals: an elliptic shoal on a sloping beach and a circular shoal on a flat bottom.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.