No CrossRef data available.
Published online by Cambridge University Press: 03 November 2025

The Richtmyer–Meshkov instability (RMI) develops when a planar shock front hits a rippled contact surface separating two different fluids. After the incident shock refraction, a transmitted shock is always formed and another shock or a rarefaction is reflected back. The pressure/entropy/vorticity fields generated by the rippled wavefronts are responsible of the generation of hydrodynamic perturbations in both fluids. In linear theory, the contact surface ripple reaches an asymptotic normal velocity which is dependent on the incident shock Mach number, fluid density ratio and compressibilities. In this work we only deal with the situations in which a shock is reflected. Our main goal is to show an explicit, closed form expression of the asymptotic linear velocity of the corrugation at the contact surface, valid for arbitrary Mach number, fluid compressibilities and pre-shock density ratio. An explicit analytical formula (closed form expression) is presented that works quite well in both limits: weak and strong incident shocks. The new formula is obtained by approximating the contact surface by a rigid piston. This work is a natural continuation of J. G. Wouchuk (2001 Phys. Rev. E vol. 63, p. 056303) and J. G. Wouchuk (2025 Phys. Rev. E vol. 111, p. 035102). It is shown here that a rigid piston approximation (RPA) works quite well in the general case, giving reasonable agreement with existing simulations, previous analytical models and experiments. An estimate of the relative error incurred because of the RPA is shown as a function of the incident shock Mach number
$M_i$ and ratio of
$\gamma $ values at the contact surface. The limits of validity of this approximation are also discussed. The calculations shown here have been done with the scientific software Mathematica. The files used to do these calculations can be retrieved as Supplemental Files to this article.