Hostname: page-component-7f64f4797f-l842n Total loading time: 0 Render date: 2025-11-09T16:13:10.462Z Has data issue: false hasContentIssue false

Analytical model of the linear Richtmyer–Meshkov instability when a shock is reflected

Published online by Cambridge University Press:  03 November 2025

Juan Gustavo Wouchuk*
Affiliation:
University of Castilla La Mancha, Ciudad Real, Spain (retired)
*
Corresponding author: Juan Gustavo Wouchuk, gustavo.wouchuk@uclm.es

Abstract

The Richtmyer–Meshkov instability (RMI) develops when a planar shock front hits a rippled contact surface separating two different fluids. After the incident shock refraction, a transmitted shock is always formed and another shock or a rarefaction is reflected back. The pressure/entropy/vorticity fields generated by the rippled wavefronts are responsible of the generation of hydrodynamic perturbations in both fluids. In linear theory, the contact surface ripple reaches an asymptotic normal velocity which is dependent on the incident shock Mach number, fluid density ratio and compressibilities. In this work we only deal with the situations in which a shock is reflected. Our main goal is to show an explicit, closed form expression of the asymptotic linear velocity of the corrugation at the contact surface, valid for arbitrary Mach number, fluid compressibilities and pre-shock density ratio. An explicit analytical formula (closed form expression) is presented that works quite well in both limits: weak and strong incident shocks. The new formula is obtained by approximating the contact surface by a rigid piston. This work is a natural continuation of J. G. Wouchuk (2001 Phys. Rev. E vol. 63, p. 056303) and J. G. Wouchuk (2025 Phys. Rev. E vol. 111, p. 035102). It is shown here that a rigid piston approximation (RPA) works quite well in the general case, giving reasonable agreement with existing simulations, previous analytical models and experiments. An estimate of the relative error incurred because of the RPA is shown as a function of the incident shock Mach number $M_i$ and ratio of $\gamma $ values at the contact surface. The limits of validity of this approximation are also discussed. The calculations shown here have been done with the scientific software Mathematica. The files used to do these calculations can be retrieved as Supplemental Files to this article.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abramowitz, M. & Stegun, I.A. 1972 Applied Mathematics. Dover Publications.Google Scholar
Batchelor, G.K. 2002 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Briscoe, M. & Kovitz, A. 1968.J.F.M. 31, 297,10.1017/S0022112068000315CrossRefGoogle Scholar
Calvo-Rivera, A., Velikovich, A.L. & Huete, C. 2023 J. Fluid Mech. 964, A33.10.1017/jfm.2023.373CrossRefGoogle Scholar
Campos, F.C. & Wouchuk, J.G. 2014 Phys. Rev. E 90, 053007.10.1103/PhysRevE.90.053007CrossRefGoogle Scholar
Cao, Q. et al. 2024, J. Fluid Mech. 999, A31.Google Scholar
Churchill, R.V. 1974 Complex Variables and Applications. MacGraw-Hill.Google Scholar
Cobos-Campos, F. & Wouchuk, J.G. 2016 Phys. Rev. E 93, 053111.10.1103/PhysRevE.93.053111CrossRefGoogle Scholar
Collins, B.D. & Jacobs, J.W. 2002 J. Fluid Mech. 464, 113.10.1017/S0022112002008844CrossRefGoogle Scholar
Dimonte, G., Frerking, C.E., Schneider, M. & Remington, B. 1996 Phys. Plasmas 3, 614.10.1063/1.871889CrossRefGoogle Scholar
Fraley, G. 1986 Phys. Fluids 29, 376.10.1063/1.865722CrossRefGoogle Scholar
Fu, Z. et al. 2025 Phys. Plasmas 32, 022114.10.1063/5.0227404CrossRefGoogle Scholar
Holmes, R.L., Dimonte, G., Bruce Fryxell, M.L.G., Grove, J.W. & Zhang, Q. 1999 J. Fluid Mech. 389, 55.10.1017/S0022112099004838CrossRefGoogle Scholar
Huete, C., Wouchuk, J.G., Canaud, B. & Velikovich, A.L. 2012 J. Fluid Mech. 700, 214245.10.1017/jfm.2012.126CrossRefGoogle Scholar
Jacobs, J.W. & Krivets, V.V. 2005 Phys. Fluids 17, 034105–03.10.1063/1.1852574CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1986 Fluid Mechanics, vol. 6, Pergamon Press.Google Scholar
Latini, M. et al. 2007 Phys. Fluids 19, 024104 .10.1063/1.2472508CrossRefGoogle Scholar
Lindl, J. 2014 Phys. Plasmas 21, 020501.10.1063/1.4865400CrossRefGoogle Scholar
Liu, L., Liang, Y., Ding, J., Liu, N. & Xisheng, L. 2018 J. Fluid Mech. 853 (R2).10.1017/jfm.2018.628CrossRefGoogle Scholar
Matsuoka, C. et al. 2003 Phys. Rev. E 67, 036301–03.10.1103/PhysRevE.67.036301CrossRefGoogle Scholar
Matsuoka, C. et al. 2020 Phys. Plasmas 27, 112301.10.1063/5.0016553CrossRefGoogle Scholar
Matsuoka, C. & Nishihara, K. 2023 Phys. Plasmas 30, 062304.Google Scholar
Meshkov, E.E. 1969 Fluid Dyn. 4, 101.10.1007/BF01015969CrossRefGoogle Scholar
Meyer, K.A. & Blewett, P.J. 1972 Phys. Fluids 15, 753.Google Scholar
Mikaelian, K. 1991 Phys. Fluids 6,357.Google Scholar
Morse, P.M. & Feshbach, H. 1953 Methods of Theoretical Physics, Part I. Feshbach Publishing, LLC.Google Scholar
Napieralski, M., Cobos, F., Velikovich, A.L. & Huete, C. 2024, J. Fluid Mech. A18, 1000.Google Scholar
Piriz, A.R. & Wouchuk, J.G. 1992 Nucl. Fusion 32, 933.Google Scholar
Richtmyer, R.D. 1960 Commun. Pure Appl. Math 13, 297.10.1002/cpa.3160130207CrossRefGoogle Scholar
Sneddon, I.N. 1972 The Use of Integral Transforms. McGraw-Hill Book Company.Google Scholar
Velikovich, A.L. 1996 Phys. Fluids 8, 1666.10.1063/1.868938CrossRefGoogle Scholar
Velikovich, A.L., Dahlburg, J.P., Schmitt, A.J., Gardner, J.H., Phillips, L.P., Cochran, F.L., Chong, Y.K., Dimonte, G. & Metzler, N. 2000 Phys. Plasmas 7, 1662.10.1063/1.873986CrossRefGoogle Scholar
Velikovich, A.L. et al. 2020 Phys. Plasmas 27, 102706.10.1063/5.0020367CrossRefGoogle Scholar
Vandenboomgaerde, M., Souffland, D., Mariani, C., Biamino, L., Jourdan, G. & Houas, L. 2014 Phys. Fluids 26, 024109.10.1063/1.4865836CrossRefGoogle Scholar
Whitham, G.B.W. 1973 Linear and Non-Linear Waves. Wiley.Google Scholar
Wouchuk, J.G. 2001 Phys. Plasmas 8, 2890.10.1063/1.1369119CrossRefGoogle Scholar
Wouchuk, J.G. 2001 Phys. Rev. E 63, 056303.10.1103/PhysRevE.63.056303CrossRefGoogle Scholar
Wouchuk, J.G. 2025 Phys. Rev. E 111, 035102–03.10.1103/PhysRevE.111.035102CrossRefGoogle Scholar
Wouchuk, J.G. & Campos, F.C. 2017 Plasma Phys. Control. Fusion 59, 014033.10.1088/0741-3335/59/1/014033CrossRefGoogle Scholar
Wouchuk, J.G. & Carretero, R. 2003 Phys. Plasmas 10, 4237.10.1063/1.1618773CrossRefGoogle Scholar
Wouchuk, J.G. & Cavada, J.L. 2004 Phys. Rev. E 70, 046303.10.1103/PhysRevE.70.046303CrossRefGoogle Scholar
Wouchuk, J.G. & Cobos-Campos, F. 2018 Phys. Scr. 93, 094003.10.1088/1402-4896/aacf58CrossRefGoogle Scholar
Wouchuk, J.G. & Nishihara, K. 1996 Phys. Plasmas 3, 3761.10.1063/1.871940CrossRefGoogle Scholar
Wouchuk, J.G. & Nishihara, K. 1997 Phys. Plasmas 4, 1028.10.1063/1.872191CrossRefGoogle Scholar
Wouchuk, J.G. & Nishihara, K. 2004.Google Scholar
Wouchuk, J.G. & Sano, T. 2015, Phys. Rev. E 91, 023005.10.1103/PhysRevE.91.023005CrossRefGoogle Scholar
Yang, Y., Zhang, Q. & Sharp, D. 1994 Phys. Fluids 6,1856.Google Scholar
Zaidel’, P. 1960 J. Appl. Math. Mech. 24, 316.10.1016/0021-8928(60)90035-6CrossRefGoogle Scholar
Zhou, Y. 2017 Phys. Rep. 720–722, 1136.Google Scholar
Zwillinger, D. 1983 Handbook of Integration. Jones and Bartlett Publishers.Google Scholar
Supplementary material: File

Wouchuk supplementary material

Wouchuk supplementary material
Download Wouchuk supplementary material(File)
File 388.5 KB