Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-v8rb6 Total loading time: 0.286 Render date: 2022-01-27T20:07:16.559Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Approximate solutions to droplet dynamics in Hele-Shaw flows

Published online by Cambridge University Press:  23 August 2018

Yoav Green*
Affiliation:
Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
*
Email address for correspondence: ygreen@hsph.harvard.edu

Abstract

For the past decade, the interaction force between droplets flowing in a Hele-Shaw cell has been modelled as a dipole. In this work, we use the recently derived analytical solution of Sarig et al. (J. Fluid Mech., vol. 800, 2016, pp. 264–277) of a two-droplet system, which satisfies the no-flux condition at both droplet interfaces, and compare it to results of the dipole model, which does not satisfy the no-flux condition. Unfortunately, the recently derived solution is given in terms of infinite Fourier series, making any additional straightforward analysis difficult. We derive simple approximations for these Fourier series. We show that at large spacing the approximations for the interactions reduce to the expected dipole-like solution. We also provide a new lower limit for the velocity for the case of almost touching droplets. For the case of large spacing, the derivation is extended to arbitrary droplet numbers – including an infinite lattice. We present a new correction for the dispersion relation for the perturbations. We investigate the effect of the number of droplets in a lattice, $N$, on the resulting dynamics.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was conducted primarily at the Faculty of Mechanical Engineering, Technion–Israel Institute of Technology, Technion City 3200003, Israel.

References

Beatus, T., Bar-Ziv, R. & Tlusty, T. 2007 Anomalous microfluidic phonons induced by the interplay of hydrodynamic screening and incompressibility. Phys. Rev. Lett. 99 (12), 124502.CrossRefGoogle ScholarPubMed
Beatus, T., Bar-Ziv, R. H. & Tlusty, T. 2012 The physics of 2D microfluidic droplet ensembles. Phys. Rep. 516 (3), 103145.CrossRefGoogle Scholar
Beatus, T., Tlusty, T. & Bar-Ziv, R. 2006 Phonons in a one-dimensional microfluidic crystal. Nat. Phys. 2 (11), 743748.CrossRefGoogle Scholar
Beatus, T., Tlusty, T. & Bar-Ziv, R. 2009 Burgers shock waves and sound in a 2D microfluidic droplets ensemble. Phys. Rev. Lett. 103 (11), 114502.CrossRefGoogle Scholar
Belloul, M., Engl, W., Colin, A., Panizza, P. & Ajdari, A. 2009 Competition between local collisions and collective hydrodynamic feedback controls traffic flows in microfluidic networks. Phys. Rev. Lett. 102 (19), 194502.CrossRefGoogle ScholarPubMed
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10 (2), 166188.CrossRefGoogle Scholar
Champagne, N., Lauga, E. & Bartolo, D. 2011 Stability and non-linear response of 1D microfluidic-particle streams. Soft Matt. 7 (23), 1108211085.CrossRefGoogle Scholar
Champagne, N., Vasseur, R., Montourcy, A. & Bartolo, D. 2010 Traffic jams and intermittent flows in microfluidic networks. Phys. Rev. Lett. 105 (4), 044502.CrossRefGoogle ScholarPubMed
Christopher, G. F., Noharuddin, N. N., Taylor, J. A. & Anna, S. L. 2008 Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E 78 (3), 036317.Google ScholarPubMed
Crowdy, D. G., Surana, A. & Yick, K.-Y. 2007 The irrotational motion generated by two planar stirrers in inviscid fluid. Phys. Fluids 19 (1), 018103.CrossRefGoogle Scholar
Currie, I. G. 1974 Fundamental Mechanics of Fluids. McGraw-Hill.Google Scholar
Desreumaux, N., Caussin, J.-B., Jeanneret, R., Lauga, E. & Bartolo, D. 2013 Hydrodynamic fluctuations in confined particle-laden fluids. Phys. Rev. Lett. 111 (11), 118301.CrossRefGoogle ScholarPubMed
Garstecki, P., Gitlin, I., Diluzio, W., Whitesides, G. M., Kumacheva, E. & Stone, H. A. 2004 Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett. 85 (13), 26492651.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 2007 Table of Integrals, Series, and Products, 7th edn. Academic Press.Google Scholar
Green, C. C., Lustri, C. J. & McCue, S. W. 2017 The effect of surface tension on steadily translating bubbles in an unbounded Hele-Shaw cell. Proc. R. Soc. Lond. A 473 (2201), 20170050.CrossRefGoogle Scholar
Hodges, S. R., Jensen, O. E. & Rallison, J. M. 2004 The motion of a viscous drop through a cylindrical tube. J. Fluid Mech. 501, 279301.CrossRefGoogle Scholar
Huerre, A., Theodoly, O., Leshansky, A. M., Valignat, M.-P., Cantat, I. & Jullien, M.-C. 2015 Droplets in microchannels: dynamical properties of the lubrication film. Phys. Rev. Lett. 115 (6), 064501.CrossRefGoogle ScholarPubMed
Joanicot, M. & Ajdari, A. 2005 Droplet control for microfluidics. Science 309 (5736), 887888.CrossRefGoogle ScholarPubMed
Kittel, C. 1986 Introduction to Solid State Physics. Wiley.Google Scholar
Kopf-Sill, A. R. & Homsy, G. M. 1987 Narrow fingers in a Hele-Shaw cell. Phys. Fluids 30 (9), 26072609.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
Lewin, L. 1991 Structural Properties of Polylogarithms. American Mathematical Society.CrossRefGoogle Scholar
Link, D. R., Anna, S. L., Weitz, D. A. & Stone, H. A. 2004 Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92 (5), 054503.CrossRefGoogle ScholarPubMed
Liu, B., Goree, J. & Feng, Y. 2012 Waves and instability in a one-dimensional microfluidic array. Physical Review E 86 (4), 046309.Google Scholar
Maxworthy, T. 1986 Bubble formation, motion and interaction in a Hele-Shaw cell. J. Fluid Mech. 173, 95114.CrossRefGoogle Scholar
Pompano, R. R., Liu, W., Du, W. & Ismagilov, R. F. 2011 Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. Annu. Rev. Anal. Chem. 4 (1), 5981.CrossRefGoogle ScholarPubMed
Prosperetti, A. 2011 Advanced Mathematics for Applications. Cambridge University Press.Google Scholar
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312329.CrossRefGoogle Scholar
Sarig, I., Starosvetsky, Y. & Gat, A. 2016 Interaction forces between microfluidic droplets in a Hele-Shaw cell. J. Fluid Mech. 800, 264277.CrossRefGoogle Scholar
Shani, I., Beatus, T., Bar-Ziv, R. H. & Tlusty, T. 2014 Long-range orientational order in two-dimensional microfluidic dipoles. Nat. Phys. 10 (2), 140144.CrossRefGoogle Scholar
Shen, B., Leman, M., Reyssat, M. & Tabeling, P. 2014 Dynamics of a small number of droplets in microfluidic Hele-Shaw cells. Exp. Fluids 55 (5), 1728.CrossRefGoogle Scholar
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77 (3), 9771026.CrossRefGoogle Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36 (1), 381411.CrossRefGoogle Scholar
Tanveer, S. 1986 The effect of surface tension on the shape of a Hele-Shaw cell bubble. Phys. Fluids 29 (11), 35373548.CrossRefGoogle Scholar
Taylor, G. & Saffman, P. G. 1959 A note on the motion of bubbles in a Hele-Shaw cell and porous medium. Q. J. Mech. Appl. Maths 12 (3), 265279.CrossRefGoogle Scholar
Teletzke, G. F., Davis, H. T. & Scriven, L. E. 1988 Wetting hydrodynamics. Rev. Phys. Appl. 23 (6), 9891007.CrossRefGoogle Scholar
Uspal, W. E. & Doyle, P. S. 2012a Collective dynamics of small clusters of particles flowing in a quasi-two-dimensional microchannel. Soft Matt. 8 (41), 1067610686.CrossRefGoogle Scholar
Uspal, W. E. & Doyle, P. S. 2012b Scattering and nonlinear bound states of hydrodynamically coupled particles in a narrow channel. Phys. Rev. E 85 (1), 016325.Google Scholar
2
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Approximate solutions to droplet dynamics in Hele-Shaw flows
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Approximate solutions to droplet dynamics in Hele-Shaw flows
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Approximate solutions to droplet dynamics in Hele-Shaw flows
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *